WEBINAR: Getting started with deep learning
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.
Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep...
Keywords: Deep learning, Neural networks, Machine learning
WEBINAR: Getting started with deep learning
https://zenodo.org/records/5121004
https://dresa.org.au/materials/webinar-getting-started-with-deep-learning-986aa2d2-594a-4a7f-836c-44d6e9d5d017
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.
Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning.
The webinar is followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/I1TmpnZUuiQ
Melissa Burke (melissa@biocommons.org.au)
Tang, Titus (orcid: 0000-0001-7496-1152)
Deep learning, Neural networks, Machine learning
WEBINAR: AlphaFold: what's in it for me?
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the...
Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: AlphaFold: what's in it for me?
https://zenodo.org/records/7865494
https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.
Beyond the hype, what does this mean for structural biology as a field (and as a career)?
Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases.
Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/4ytn2_AiH8s
Melissa Burke (melissa@biocommons.org.au)
Morton, Craig (orcid: 0000-0001-5452-5193)
Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Deep Learning for Natural Language Processing
This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for...
Keywords: Deep learning, NLP, Machine learning
Resource type: presentation, tutorial
Deep Learning for Natural Language Processing
https://doi.org/10.26180/13100513
https://dresa.org.au/materials/deep-learning-for-natural-language-processing
This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for attendees to train their own RNN.
The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises.
This workshop introduces natural language as data for deep learning. We discuss various techniques and software packages (e.g. python strings, RegEx, NLTK, Word2Vec) that help us convert, clean, and formalise text data “in the wild” for use in a deep learning model. We then explore the training and testing of a Recurrent Neural Network on the data to complete a real world task. We will be using TensorFlow v2 for this purpose.
datascienceplatform@monash.edu
Titus Tang
Deep learning, NLP, Machine learning
Getting Started with Deep Learning
This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning...
Keywords: Deep learning, Machine learning
Resource type: presentation
Getting Started with Deep Learning
https://doi.org/10.26180/15032688
https://dresa.org.au/materials/getting-started-with-deep-learning
This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning application. The lecture also provides pointers to various resources you could use to gain a stronger foothold in deep learning.
This lecture is targeted at researchers who may be complete beginners in machine learning, deep learning, or even with programming, but who would like to get into the space to build AI systems hands-on.
datascienceplatform@monash.edu
Titus Tang
Deep learning, Machine learning
Semi-Supervised Deep Learning
Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled...
Keywords: Deep learning, Machine learning, semi-supervised
Resource type: presentation, tutorial
Semi-Supervised Deep Learning
https://doi.org/10.26180/14176805
https://dresa.org.au/materials/semi-supervised-deep-learning
Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled data. If successful, it allows better training of a model despite the limited amount of labelled data available.
This workshop is designed to be instructor led and covers various semi-supervised learning techniques available in the literature. The workshop consists of a lecture introducing at a high level a selection of techniques that are suitable for semi-supervised deep learning. We discuss how these techniques can be implemented and the underlying assumptions they require. The lecture is followed by a hands-on session where attendees implement a semi-supervised learning technique to train a neural network. We observe and discuss the changing performance and behaviour of the network as varying degrees of labelled and unlabelled data is provided to the network during training.
datascienceplatform@monash.edu
Titus Tang
Deep learning, Machine learning, semi-supervised
Introduction to Deep Learning and TensorFlow
This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain...
Keywords: Deep learning, convolutional neural network, tensorflow, Machine learning
Resource type: presentation, tutorial
Introduction to Deep Learning and TensorFlow
https://doi.org/10.26180/13100519
https://dresa.org.au/materials/introduction-to-deep-learning-and-tensorflow
This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises.
This workshop is an introduction to how deep learning works and how you could create a neural network using TensorFlow v2. We start by learning the basics of deep learning including what a neural network is, how information passes through the network, and how the network learns from data through the automated process of gradient descent. Workshop attendees would build, train and evaluate a neural network using a cloud GPU (Google Colab).
In part 2, we look at image data and how we could train a convolution neural network to classify images. Workshop attendees will extend their knowledge from the first part to design, train and evaluate this convolutional neural network.
datascienceplatform@monash.edu
Titus Tang
Deep learning, convolutional neural network, tensorflow, Machine learning