Register training material
7 materials found

Resource type: activity 


Guide to HeSANDA and Health Data Australia

The Guide to HeSANDA and Health Data Australia is an easy and engaging way to quickly learn how to access and use Health Data Australia, a catalogue of health and medical research developed to make it easier to find existing datasets that can be used for secondary research.

HeSANDA is the...

Keywords: HeSANDA WA

Resource type: activity

Guide to HeSANDA and Health Data Australia https://dresa.org.au/materials/guide-to-hesanda-and-health-data-australia The Guide to HeSANDA and Health Data Australia is an easy and engaging way to quickly learn how to access and use Health Data Australia, a catalogue of health and medical research developed to make it easier to find existing datasets that can be used for secondary research. HeSANDA is the Health Studies Australian National Data Asset program led by ARDC, the Australian Research Data Commons, which is funded by the National Critical Research Infrastructure Strategy (NCRIS). This Guide will explain the process for researchers to find and request access to existing data. It will also show how the Data Provider (the researcher who created the data) always maintains control over their data and decides with whom it is shared. Julia Fallon-Ferguson Executive Officer julia.fallon-ferguson@curtin.edu.au Clinical Trials Enabling Platform - Western Australia Please note my working days are Monday to Wednesday Tom Pazoum, Research Education and Training Program, Western Australian Health Translation Network HeSANDA WA support
OpenCL

Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC...

Keywords: supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs

Resource type: activity

OpenCL https://dresa.org.au/materials/opencl Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC infrastructure. training@pawsey.org.au Toby Potter supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs masters ecr researcher support
AMD Profiling

The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs.

You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite.

You will also learn how to use the new...

Keywords: supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm

Resource type: activity

AMD Profiling https://dresa.org.au/materials/amd-profiling The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs. You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite. You will also learn how to use the new Omnitools - Omnitrace and Omniperf - that were introduced at the end of 2022. Omnitrace is a powerful tracing profiler for both CPU and GPU. It can collect data from a much wider range of sources and includes hardware counters and sampling approaches. Omniperf is a performance analysis tool that can help you pinpoint how your application is performing with a visual view of the memory hierarchy on the GPU as well as reporting the percentage of peak for many different measurements. training@pawsey.org.au supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm
Evaluate Application Performance using TAU and E4S

In this workshop, you learn about the Extreme-scale Scientific Software Stack and the TAU Performance System® and its interfaces to other tools and libraries. The workshop includes sample codes that illustrate the different instrumentation and measurement choices.

Topics covered include...

Keywords: supercomputing, TAU, E4S, Performance, ROCm, OpenMP

Resource type: activity

Evaluate Application Performance using TAU and E4S https://dresa.org.au/materials/evaluate-application-performance-using-tau-and-e4s In this workshop, you learn about the Extreme-scale Scientific Software Stack and the TAU Performance System® and its interfaces to other tools and libraries. The workshop includes sample codes that illustrate the different instrumentation and measurement choices. Topics covered include generating performance profiles and traces with memory utilization and headroom, I/O, and interfaces to ROCm, including ROCProfiler and ROCTracer with support for collecting hardware performance data. The workshop also covers instrumentation of OpenMP programs using OpenMP Tools Interface (OMPT), including support for target offload and measurement of a program’s memory footprint. During the session, there are hands-on activities on scalable tracing using OTF2 and visualization using the Vampir trace analysis tool. Performance data analysis using ParaProf and PerfExplorer are demonstrated using the performance data management framework (TAUdb) that includes TAU’s performance database. training@pawsey.org.au supercomputing, TAU, E4S, Performance, ROCm, OpenMP
C/C++ Refresher

The C++ programming language and its C subset is used extensively in research environments. In particular it is the language utilised in the parallel programming frameworks CUDA, HIP, and OpenCL.

This workshop is designed to equip participants with “Survival C++”, an understanding of the basic...

Keywords: supercomputing, C/C++, Programming

Resource type: activity

C/C++ Refresher https://dresa.org.au/materials/c-c-refresher The C++ programming language and its C subset is used extensively in research environments. In particular it is the language utilised in the parallel programming frameworks CUDA, HIP, and OpenCL. This workshop is designed to equip participants with “Survival C++”, an understanding of the basic syntax, how information is encoded in binary format, and how to compile and debug C++ software. training@pawsey.org.au supercomputing, C/C++, Programming
Research Data Management (RDM) Online Orientation Module (Macquarie University)

This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata,...

Keywords: research data, data management, FAIR data, training

Resource type: quiz, activity, other

Research Data Management (RDM) Online Orientation Module (Macquarie University) https://dresa.org.au/materials/macquarie-university-research-data-management-rdm-online This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify. The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata, benefits of data sharing, licensing, repositories, and best practice including the FAIR principles. Embedded activities and examples help extend learner experience and awareness. The course was designed to assist research students and early career researchers in complying with policies and legislative requirements, understand safe data practices, raise awareness of the benefits of data curation and data sharing (efficiency and impact) and equip them with the required knowledge to plan their data management early in their projects. This course is divided into four sections 1. Crawl - What is Research Data and why care for it? Policy and legislative requirements. The Research Data Life-cycle. Data Management Planning (~30 mins) 2. Walk - Data sensitivity, identifiability, storage, and security (~60 mins) 3. Run - Record keeping, data retention, file naming, folder structures, version control, metadata, data sharing, open data, licences, data repositories, data citation, and ethics (~75 mins) 4. Jump - Best practice FAIR data principles (~45 mins) 5. Fight - Review - a quiz designed to review and reinforce knowledge (~15 mins) https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0 * *Password: "FAIR" *Password: "FAIR" Any queries or suggestions for course improvement can be directed to the Macquarie University Research Integrity Team: Dr Paul Sou (paul.sou@mq.edu.au) or Dr Shannon Smith (shannon.smith@mq.edu.au). Scorm files can be made available upon request. research data, data management, FAIR data, training
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

Keywords: training material, FAIR data, research data, data management, FAIR

Resource type: presentation, quiz, activity

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. ARDC Contact us: https://ardc.edu.au/contact-us/ training material, FAIR data, research data, data management, FAIR phd ecr researcher support