Register training material
8 materials found

Licence: other-at  or CC-BY-SA-4.0 


A hands on introduction to Large Language Models like Bing Chat and ChatGPT

Event run 7 June at the MQ Incubator. Event description:

A two-hour hands-on workshop giving a brief history of the last 4 months of development of "Generative AI."

These tools, these Large Language Models, offer present promise and peril -- disruption -- to ways of working and of...

Keywords: Large Language Model, ChatGPT

A hands on introduction to Large Language Models like Bing Chat and ChatGPT https://dresa.org.au/materials/a-hands-on-introduction-to-large-language-models-like-bing-chat-and-chatgpt Event run 7 June at the MQ Incubator. Event description: A two-hour hands-on workshop giving a brief history of the last 4 months of development of "Generative AI." These tools, these Large Language Models, offer present promise and peril -- disruption -- to ways of working and of learning. Outside the "hype," these tools are "calculators for words" and allow the same manipulation and reflection of a user's words as a calculator offers for a user's numbers. The workshop will guide users into using various free and paid tools, and the effective use of Large Language Models through chain of thought prompting. Remember: a LLM is "Always confident and usually correct." OSF Description (LLM generated): This two-hour workshop provides a comprehensive introduction to the world of Large Language Models (LLMs), focusing on the recent advancements in Generative AI. Participants will gain insights into the development and functionality of prominent LLMs such as Bing Chat and ChatGPT. The workshop will delve into the concept of LLMs as "calculators for words," highlighting their potential to revolutionize ways of working and learning. The session will explore the principles of Prompt Engineering and Transactional Prompting, demonstrating how consistent prompts can yield reliable and reproducible results. Participants will also learn about the practical applications of LLMs, including editing and proofreading papers, generating technical documentation, recipe ideation, and more. The workshop emphasizes the importance of understanding the terms of use and the responsibilities that come with using these powerful AI tools. By the end of the session, participants will be equipped with the knowledge and skills to effectively use LLMs in various contexts, guided by the mantra that a LLM is "Always confident and usually correct." Brian Ballsun-Stanton (brian.ballsun-stanton@mq.edu.au) Large Language Model, ChatGPT researcher
Introduction to REDCap at Griffith University

This site is designed as a companion to Griffith Library’s Research Data Capture workshops. It can also be treated as a standalone, self-paced tutorial for learning to use REDCap (Research Electronic Data Capture) a secure web application for building and managing online surveys and databases.

Keywords: REDCap, survey instruments

Resource type: tutorial

Introduction to REDCap at Griffith University https://dresa.org.au/materials/introduction-to-redcap-at-griffith-university This site is designed as a companion to Griffith Library’s Research Data Capture workshops. It can also be treated as a standalone, self-paced tutorial for learning to use REDCap (Research Electronic Data Capture) a secure web application for building and managing online surveys and databases. y.banens@griffith.edu.au REDCap, survey instruments mbr phd ecr researcher support
Introduction to text mining and analysis

In this self-paced workshop you will learn steps to: 
- Build data sets: find where and how to gather textual data for your corpus or data set.  
- Prepare data for analysis: explore useful processes and tools to prepare and clean textual data for analysis
- Analyse data: identify different...

Keywords: textual training materials

Resource type: tutorial

Introduction to text mining and analysis https://dresa.org.au/materials/introduction-to-text-mining-and-analysis In this self-paced workshop you will learn steps to:  - Build data sets: find where and how to gather textual data for your corpus or data set.   - Prepare data for analysis: explore useful processes and tools to prepare and clean textual data for analysis - Analyse data: identify different types of analysis used to interrogate content and uncover new insights s.stapleton@griffith.edu.au; y.banens@griffith.edu.au; textual training materials mbr phd ecr researcher support
Introducing Computational Thinking

This workshop is for researchers at all career stages who want to understand the uses and the building blocks of computational thinking. This skill is useful for all kinds of problem solving, whether in real life or in computing.

The workshop will not teach computer programming per se. Instead...

Keywords: computational skills, data skills

Resource type: tutorial

Introducing Computational Thinking https://dresa.org.au/materials/introducing-computational-thinking This workshop is for researchers at all career stages who want to understand the uses and the building blocks of computational thinking. This skill is useful for all kinds of problem solving, whether in real life or in computing. The workshop will not teach computer programming per se. Instead it will cover the thought processes involved should you want to learn to program. s.stapleton@griffith.edu.au computational skills, data skills
The Living Book of Digital Skills

The Living Book of Digital Skills (You never knew you needed until now) is a living, open source online guide to 'modern not-quite-technical computer skills' for researchers and the broader academic community.

A collaboration between Australia's Academic Research Network (AARNet) and the...

Keywords: digital skills, digital dexterity, community, open source

Resource type: guide

The Living Book of Digital Skills https://dresa.org.au/materials/the-living-book-of-digital-skills *The Living Book of Digital Skills (You never knew you needed until now)* is a living, open source online guide to 'modern not-quite-technical computer skills' for researchers and the broader academic community. A collaboration between Australia's Academic Research Network (AARNet) and the Council of Australian Librarians (CAUL), this book is the creation of the CAUL Digital Dexterity Champions and their communities. **Contributing to the Digital Skills GitBook** The Digital Skills GitBook is an open source project and like many projects on GitHub we welcome your contributions. If you have knowledge or expertise on one of our [requested topics](https://aarnet.gitbook.io/digital-skills-gitbook-1/requested-articles), we would love you to write an article for the book. Please let us know what you'd like to write about via our [contributor form](https://github.com/AARNet/Digital-Skills-GitBook/issues/new?assignees=sarasrking&labels=contributors&template=contributor-form.yml&title=Contributor+form%3A+). There are other ways to contribute too. For example, you might: * have a great idea for a new topic to be included in one of our chapters (make a new page) * notice some information that’s out-of-date or that could be explained better (edit a page) * come across something in the GitBook that’s not working as it should be (submit an issue) Sara King - sara.king@aarnet.edu.au Sara King Miah de Francesch Emma Chapman Katie Mills Ruth Cameron digital skills, digital dexterity, community, open source ugrad masters mbr phd ecr researcher support
Porting the multi-GPU SELF-Fluids code to HIPFort

In this presentation by Dr. Joseph Schoonover of Fluid Numerics LLC, Joe shares their experience with the porting process for SELF-Fluids from multi-GPU CUDA-Fortran to multi-GPU HIPFort.

The presentation covers the design principles and roadmap for SELF and the strategy to port from...

Keywords: AMD, GPUs, supercomputer, supercomputing

Resource type: presentation

Porting the multi-GPU SELF-Fluids code to HIPFort https://dresa.org.au/materials/porting-the-multi-gpu-self-fluids-code-to-hipfort In this presentation by Dr. Joseph Schoonover of Fluid Numerics LLC, Joe shares their experience with the porting process for SELF-Fluids from multi-GPU CUDA-Fortran to multi-GPU HIPFort. The presentation covers the design principles and roadmap for SELF and the strategy to port from Nvidia-only platforms to AMD & Nvidia GPUs. Also discussed are the hurdles encountered along the way and considerations for developing multi-GPU accelerated applications in Fortran. SELF is an object-oriented Fortran library that supports the implementation of Spectral Element Methods for solving partial differential equations. SELF-Fluids is an implementation of SELF that solves the compressible Navier Stokes equations on CPU only and GPU accelerated compute platforms using the Discontinuous Galerkin Spectral Element Method. The SELF API is designed based on the assumption that SEM developers and researchers need to be able to implement derivatives in 1-D and divergence, gradient, and curl in 2-D and 3-D on scalar, vector, and tensor functions using spectral collocation, continuous Galerkin, and discontinuous Galerkin spectral element methods. The presentation discussion is placed in context of the Exascale era, where we're faced with a zoo of available compute hardware. Because of this, SELF routines provide support for GPU acceleration through AMD’s HIP and support for multi-core, multi-node, and multi-GPU platforms with MPI. training@pawsey.org.au AMD, GPUs, supercomputer, supercomputing
Embracing new solutions for in-situ visualisation

This PPT was used by Jean Favre, senior visualisation software engineer at CSCS, the Swiss National Supercomputing Centre during his presentation at P'Con '21 (Pawsey's first PaCER Conference).

This material discusses the upcoming release of ParaView v5.10, a leading scientific visualisation...

Keywords: ParaView, GPUs, supercomputer, supercomputing, visualisation, data visualisation

Resource type: presentation

Embracing new solutions for in-situ visualisation https://dresa.org.au/materials/embracing-new-solutions-for-in-situ-visualisation This PPT was used by Jean Favre, senior visualisation software engineer at CSCS, the Swiss National Supercomputing Centre during his presentation at P'Con '21 (Pawsey's first PaCER Conference). This material discusses the upcoming release of ParaView v5.10, a leading scientific visualisation application. In this release ParaView consolidates its implementation of the Catalyst API, a specification developed for simulations and scientific data producers to analyse and visualise data in situ. The material reviews some of the terminology and issues of different in-situ visualisation scenarios, then reviews early Data Adaptors for tight-coupling of simulations and visualisation solutions. This is followed by an introduction of Conduit, an intuitive model for describing hierarchical scientific data. Both ParaView-Catalyst and Ascent use Conduit’s Mesh Blueprint, a set of conventions to describe computational simulation meshes. Finally, the materials present CSCS’ early experience in adopting ParaView-Catalyst and Ascent via two concrete examples of instrumentation of some proxy numerical applications. training@pawsey.org.au ParaView, GPUs, supercomputer, supercomputing, visualisation, data visualisation
Research Data Management (RDM) Online Orientation Module (Macquarie University)

This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata,...

Keywords: research data, data management, FAIR data, training

Resource type: quiz, activity, other

Research Data Management (RDM) Online Orientation Module (Macquarie University) https://dresa.org.au/materials/macquarie-university-research-data-management-rdm-online This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify. The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata, benefits of data sharing, licensing, repositories, and best practice including the FAIR principles. Embedded activities and examples help extend learner experience and awareness. The course was designed to assist research students and early career researchers in complying with policies and legislative requirements, understand safe data practices, raise awareness of the benefits of data curation and data sharing (efficiency and impact) and equip them with the required knowledge to plan their data management early in their projects. This course is divided into four sections 1. Crawl - What is Research Data and why care for it? Policy and legislative requirements. The Research Data Life-cycle. Data Management Planning (~30 mins) 2. Walk - Data sensitivity, identifiability, storage, and security (~60 mins) 3. Run - Record keeping, data retention, file naming, folder structures, version control, metadata, data sharing, open data, licences, data repositories, data citation, and ethics (~75 mins) 4. Jump - Best practice FAIR data principles (~45 mins) 5. Fight - Review - a quiz designed to review and reinforce knowledge (~15 mins) https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0 * *Password: "FAIR" *Password: "FAIR" Any queries or suggestions for course improvement can be directed to the Macquarie University Research Integrity Team: Dr Paul Sou (paul.sou@mq.edu.au) or Dr Shannon Smith (shannon.smith@mq.edu.au). Scorm files can be made available upon request. research data, data management, FAIR data, training