14 materials found
Keywords:
R
Data Visualisation in R
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
In this workshop, you will explore different types of graphs and learn how to...
Data Visualisation in R
https://intersect.org.au/training/course/r202
https://dresa.org.au/materials/data-visualisation-in-r
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
In this workshop, you will explore different types of graphs and learn how to customise them using one of the most popular plotting packages in R, ggplot2 (Data Visualisation).
We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly.
Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from Intersect and the highly regarded Software Carpentry Foundation.
#### You'll learn:
- Using the Grammar of Graphics to convert data into figures using the ggplot2 package
- Configuring plot elements within ggplot2
- Exploring different types of plots using ggplot2
#### Prerequisites:
Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) courses to ensure that you are familiar with the knowledge needed for this course.
We also strongly recommend attending the [Data Manipulation in R](https://intersect.org.au/training/course/r201/) course.
**For more information, please click [here](https://intersect.org.au/training/course/r202).**
training@intersect.org.au
Programming, R
Data Manipulation and Visualisation in R
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
In this workshop, you will learn how to manipulate, explore and get insights from...
Data Manipulation and Visualisation in R
https://intersect.org.au/training/course/r203
https://dresa.org.au/materials/data-manipulation-and-visualisation-in-r
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
In this workshop, you will learn how to manipulate, explore and get insights from your data (Data Manipulation using the dplyr package), as well as how to convert your data from one format to another (Data Transformation using the tidyr package). You will also explore different types of graphs and learn how to customise them using one of the most popular plotting packages in R, ggplot2 (Data Visualisation).
We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly.
Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from Intersect and the highly regarded Software Carpentry Foundation.
#### You'll learn:
- DataFrame Manipulation using the dplyr package
- DataFrame Transformation using the tidyr package
- Using the Grammar of Graphics to convert data into figures using the ggplot2 package
- Configuring plot elements within ggplot2
- Exploring different types of plots using ggplot2
#### Prerequisites:
Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) courses to ensure that you are familiar with the knowledge needed for this course.
**For more information, please click [here](https://intersect.org.au/training/course/r203).**
training@intersect.org.au
Programming, R
Introduction to Machine Learning using R: Introduction & Linear Regression
Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore...
Introduction to Machine Learning using R: Introduction & Linear Regression
https://intersect.org.au/training/course/r205
https://dresa.org.au/materials/introduction-to-machine-learning-using-r-introduction-linear-regression
Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages.
#### You'll learn:
- Understand the difference between supervised and unsupervised Machine Learning.
- Understand the fundamentals of Machine Learning.
- Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training.
- Understand the Machine Learning modelling workflows.
- Use R and and its relevant packages to process real datasets, train and apply Machine Learning models
#### Prerequisites:
- Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages.
- Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them.
#### Why do this course:
- Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources.
- It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning.
- We do have applications on real datasets!
- Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects.
- Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning.
For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops:
- Introduction to Machine Learning using R: Introduction & Linear Regression
- Introduction to Machine Learning using R: Classification
- Introduction to Machine Learning using R: SVM & Unsupervised Learning
**For more information, please click [here](https://intersect.org.au/training/course/r205).**
training@intersect.org.au
Programming, R
Introduction to Machine Learning using R: Classification
Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore...
Introduction to Machine Learning using R: Classification
https://intersect.org.au/training/course/r206
https://dresa.org.au/materials/introduction-to-machine-learning-using-r-classification
Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages.
#### You'll learn:
- Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning.
- Know the differences between various core Machine Learning models.
- Understand the Machine Learning modelling workflows.
- Use R and its relevant packages to process real datasets, train and apply Machine Learning models
#### Prerequisites:
- Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training.
- Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them.
#### Why do this course:
- Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources.
- It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning.
- We do have applications on real datasets!
- Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects.
- Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning.
For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops:
- Introduction to Machine Learning using R: Introduction & Linear Regression
- Introduction to Machine Learning using R: Classification
- Introduction to Machine Learning using R: SVM & Unsupervised Learning
**For more information, please click [here](https://intersect.org.au/training/course/r206).**
training@intersect.org.au
Programming, R
Introduction to Machine Learning using R: SVM & Unsupervised Learning
Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore...
Introduction to Machine Learning using R: SVM & Unsupervised Learning
https://intersect.org.au/training/course/r207
https://dresa.org.au/materials/introduction-to-machine-learning-using-r-svm-unsupervised-learning
Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages.
#### You'll learn:
- Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction.
- Know the differences between various core Machine Learning models.
- Understand the Machine Learning modelling workflows.
- Use R and its relevant packages to process real datasets, train and apply Machine Learning models
#### Prerequisites:
- Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in the courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training.
- Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them.
#### Why do this course:
- Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources.
- It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning.
- We do have applications on real datasets!
- Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects.
- Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning.
For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops:
- Introduction to Machine Learning using R: Introduction & Linear Regression
- Introduction to Machine Learning using R: Classification
- Introduction to Machine Learning using R: SVM & Unsupervised Learning
**For more information, please click [here](https://intersect.org.au/training/course/r207).**
training@intersect.org.au
Programming, R
Exploring Chi-square and correlation in R
This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures...
Exploring Chi-square and correlation in R
https://intersect.org.au/training/course/r210
https://dresa.org.au/materials/exploring-chi-square-and-correlation-in-r
This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets.
#### You'll learn:
- Obtain inferential statistics and assess data normality
- Manipulate data and create graphs
- Perform Chi-Square tests (Goodness of Fit test and Test of Independence)
- Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau)
#### Prerequisites:
This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package).
Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)
**For more information, please click [here](https://intersect.org.au/training/course/r210).**
training@intersect.org.au
Programming, R
Traversing t tests in R
R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
The primary goal of this workshop is to familiarise you with basic statistical concepts in R from...
Traversing t tests in R
https://intersect.org.au/training/course/r211
https://dresa.org.au/materials/traversing-t-tests-in-r
R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R.
#### You'll learn:
- Read in and manipulate data
- Check assumptions of t tests
- Perform one-sample t tests
- Perform two-sample t tests (Independent-samples, Paired-samples)
- Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test)
#### Prerequisites:
This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)
**For more information, please click [here](https://intersect.org.au/training/course/r211).**
training@intersect.org.au
Programming, R
Exploring ANOVAs in R
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
This half-day course covers one and two-way Analyses of Variance (ANOVA) and their...
Exploring ANOVAs in R
https://intersect.org.au/training/course/r212
https://dresa.org.au/materials/exploring-anovas-in-r
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
This half-day course covers one and two-way Analyses of Variance (ANOVA) and their non-parametric counterparts in R. To better understand the tests, assumptions and associated concepts, we will be using a dataset containing the Mathematics scores of secondary students. This dataset also includes information regarding their mother's and father's jobs and education levels, the number of hours dedicated to study, and time spent commuting to and from school. Lifestyle information about alcohol consumption habits, whether the students have quality relationships with their families and whether they have free time after school is included in this dataset.
#### You'll learn:
- Basic statistical theory behind ANOVAs
- How to check that the data meets the assumptions
- One-way ANOVA in R and post-hoc analysis
- Two-way ANOVA plus interaction effects and post-hoc analysis
- Non-parametric alternatives to one and two-way ANOVA
#### Prerequisites:
This course assumes an intermediate level of programming proficiency, plus familiarity with the syntax and functions of the dplyr and ggplot2 packages. Experience navigating the RStudio integrated development environment (IDE) is also required.
If you’re new to programming in R, we strongly recommend you register for the [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) workshops first.
**For more information, please click [here](https://intersect.org.au/training/course/r212).**
training@intersect.org.au
Programming, R
A showcase of Data Analysis in Python and R: A case study using COVID-19 data
In all fields of research we are being confronted with a deluge of data; data that needs cleaning and transformation to be used in further analysis. This webinar demonstrates the effective use of programming tools for an initial analysis of COVID-19 datasets, with examples using both R and...
Keywords: Programming, Python, R
A showcase of Data Analysis in Python and R: A case study using COVID-19 data
https://intersect.org.au/training/course/coding002
https://dresa.org.au/materials/a-showcase-of-data-analysis-in-python-and-r-a-case-study-using-covid-19-data
In all fields of research we are being confronted with a deluge of data; data that needs cleaning and transformation to be used in further analysis. This webinar demonstrates the effective use of programming tools for an initial analysis of COVID-19 datasets, with examples using both R and Python.
#### You'll learn:
- Cleaning up a dataset for analysis
- Using Jupyter lab for interactive analysis
- Making the most of the tidyverse (R) and pandas (python)
- Simple data visualisation using ggplot (R) and seaborn (python)
- Best practices for readable code
#### Prerequisites:
The webinar has no prerequisites.
**For more information, please click [here](https://intersect.org.au/training/course/coding002).**
training@intersect.org.au
Programming, Python, R
Start Coding without Hesitation: Programming Languages Showdown
Programming is becoming more and more popular, with many researchers using programming to perform data cleaning, data manipulation, data analytics, as well as creating publication quality plots. Programming can be really beneficial for automating processes and workflows. In this webinar, we are...
Keywords: Programming, Python, R, MATLAB, Julia
Start Coding without Hesitation: Programming Languages Showdown
https://intersect.org.au/training/course/coding001
https://dresa.org.au/materials/start-coding-without-hesitation-programming-languages-showdown
Programming is becoming more and more popular, with many researchers using programming to perform data cleaning, data manipulation, data analytics, as well as creating publication quality plots. Programming can be really beneficial for automating processes and workflows. In this webinar, we are exploring four of the most popular programming languages that are widely used in academia, namely Python, R, MATLAB, and Julia.
#### You'll learn:
- Why use Programming
- An overview of Python, R, MATLAB, and Julia
- Code comparison of the four programming languages
- Popularity and job opportunities
- Intersect's comparison
- General guidelines on how to choose the best programming language for your research
#### Prerequisites:
The webinar has no prerequisites.
**For more information, please click [here](https://intersect.org.au/training/course/coding001).**
training@intersect.org.au
Programming, Python, R, MATLAB, Julia
Learn to Program: R
R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework.
But getting started with R can be challenging,...
Learn to Program: R
https://intersect.org.au/training/course/r101
https://dresa.org.au/materials/learn-to-program-r
R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework.
But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in.
We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly.
Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation.
#### You'll learn:
- Introduction to the RStudio interface for programming
- Basic syntax and data types in R
- How to load external data into R
- Creating functions (FUNCTIONS)
- Repeating actions and analysing multiple data sets (LOOPS)
- Making choices (IF STATEMENTS - CONDITIONALS)
- Ways to visualise data in R
#### Prerequisites:
No prior experience with programming needed to attend this course.
We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/).
**For more information, please click [here](https://intersect.org.au/training/course/r101).**
training@intersect.org.au
Programming, R
R for Social Scientists
R is quickly gaining popularity as a programming language of choice for researchers. It has an excellent ecosystem including the powerful RStudio development environment.
But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory...
R for Social Scientists
https://intersect.org.au/training/course/r103
https://dresa.org.au/materials/r-for-social-scientists
R is quickly gaining popularity as a programming language of choice for researchers. It has an excellent ecosystem including the powerful RStudio development environment.
But getting started with R can be challenging, particularly if you've never programmed before. That's where this introductory course comes in.
Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Data Carpentry.
#### You'll learn:
- Basic syntax and data types in R
- RStudio interface
- How to import CSV files into R
- The structure of data frames
- A brief introduction to data wrangling and data transformation
- How to calculate summary statistics
- A brief introduction to visualise data
#### Prerequisites:
No prior experience with programming needed to attend this course.
**For more information, please click [here](https://intersect.org.au/training/course/r103).**
training@intersect.org.au
Programming, R
R for Research
R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework.
This workshop is an introduction to data...
R for Research
https://intersect.org.au/training/course/r110
https://dresa.org.au/materials/r-for-research
R is quickly gaining popularity as a programming language of choice for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio development environment and the Shiny web application framework.
This workshop is an introduction to data structures (DataFrames) and visualisation (using the ggplot2 package) in R. The targeted audience for this workshop is researchers who are already familiar with the basic concepts in programming such as loops, functions, and conditionals.
We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly.
Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation.
#### You'll learn:
- Project Management with RStudio
- Introduction to Data Structures in R
- Introduction to DataFrames in R
- Selecting values in DataFrames
- Quick introduction to Plotting using the ggplot2 package
#### Prerequisites:
[Learn to Program: R](https://intersect.org.au/training/course/r101/) or any of the [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Learn to Program: MATLAB](https://intersect.org.au/training/course/matlab101/), [Learn to Program: Julia](https://intersect.org.au/training/course/julia101/), needed to attend this course. If you already have some experience with programming, please check the topics covered in the [Learn to Program: R](https://intersect.org.au/training/course/r101/) course to ensure that you are familiar with the knowledge needed for this course.
**For more information, please click [here](https://intersect.org.au/training/course/r110).**
training@intersect.org.au
Programming, R
Data Manipulation in R
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
In this workshop, you will learn how to manipulate, explore and get insights from...
Data Manipulation in R
https://intersect.org.au/training/course/r201
https://dresa.org.au/materials/data-manipulation-in-r
R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.
In this workshop, you will learn how to manipulate, explore and get insights from your data (Data Manipulation using the dplyr package), as well as how to convert your data from one format to another (Data Transformation using the tidyr package).
We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly.
Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from Intersect and the highly regarded Software Carpentry Foundation.
#### You'll learn:
- DataFrame Manipulation using the dplyr package
- DataFrame Transformation using the tidyr package
#### Prerequisites:
Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) courses to ensure that you are familiar with the knowledge needed for this course.
**For more information, please click [here](https://intersect.org.au/training/course/r201).**
training@intersect.org.au
Programming, R