7 Steps towards Reproducible Research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity...
Keywords: reproducibility, Reproducibility, reproducible workflows
Resource type: full-course, tutorial
7 Steps towards Reproducible Research
https://amandamiotto.github.io/ReproducibleResearch/
https://dresa.org.au/materials/7-steps-towards-reproducible-research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge.
The workshop can be used as self-paced or as an instructor
Amanda Miotto - a.miotto@griffith.edu.au
Amanda Miotto
reproducibility, Reproducibility, reproducible workflows
phd
support
How can software containers help your research?
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a...
Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
How can software containers help your research?
https://zenodo.org/records/5091260
https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers.
Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g
If you want to share this video please use this:
Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY].
contact@ardc.edu.au
Australian Research Data Commons
Martinez, Paula Andrea (type: ProjectLeader)
Sam Muirhead (type: Producer)
The ARDC Communications Team (type: Editor)
The ARDC Skills and Workforce Development Team (type: ProjectMember)
The ARDC eResearch Infrastructure & Services (type: ProjectMember)
The ARDC Nectar Cloud Services team (type: ProjectMember)
containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a...
Keywords: Small satellites, metadata, vocabularies, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
https://zenodo.org/records/5832057
https://dresa.org.au/materials/metasat-an-open-collaboratively-developed-metadata-toolkit-to-support-the-future-of-space-exploration-49af7d4d-f0d1-4f95-9fbe-afbd45170a6a
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a longstanding need for a vocabulary to span these community standards. A vocabulary to annotate the data and information outputs of these satellite missions, to enable search across disparate data repositories, and provide support for application of analytical services to retrieved datasets.
A common problem among small satellite teams is finding information about how other small satellites were put together, what parts worked well, what weren't compatible, what were the mission goals and outcomes. A lot of this information can be found, but it's not usually described in a consistent and searchable way across projects. MetaSat helps by building a uniform language of description which can be embedded into small satellite databases and tools to connect information across projects.
Although a relatively new vocabulary initiative, MetaSat has secured early adoption by SatNOGS, a global network of ground stations that collects, manages & enables access to satellite observations. Also partnering with NASA's Small Satellite Reliability Initiative, and in discussion with NASA concerning implementation of the vocabulary in other areas of its information infrastructure.
You can watch the full presentation on YouTube here: https://www.youtube.com/watch?v=uaCOzNL1eh4
contact@ardc.edu.au
Bouquin, Daina (orcid: 0000-0003-2626-3688)
Chivvis, Daniel (orcid: 0000-0001-6656-160X)
Small satellites, metadata, vocabularies, training material
ARDC Training Materials Metadata Checklist v1.1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
Keywords: checklist, Training material, FAIR, standard, requirements, metadata
ARDC Training Materials Metadata Checklist v1.1
https://zenodo.org/records/5276003
https://dresa.org.au/materials/ardc-training-materials-metadata-checklist-v1-1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
checklist, Training material, FAIR, standard, requirements, metadata
Why am I being asked for metadata about my research data?
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project...
Keywords: metadata, research data, data collections, data citation, data retention project, training material
Why am I being asked for metadata about my research data?
https://zenodo.org/records/5778322
https://dresa.org.au/materials/why-am-i-being-asked-for-metadata-about-my-research-data-03b1895a-44bf-4961-a0a3-bd4770297236
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project https://ardc.edu.au/collaborations/strategic-activities/data-retention-project/.
It is for researchers at any institution in Australia.
contact@ardc.edu.au
Australian Research Data Commons
metadata, research data, data collections, data citation, data retention project, training material
CheckEM User Guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...
Keywords: stereo-video, fish, annotation
CheckEM User Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/CheckEM_user_guide.html
https://dresa.org.au/materials/checkem-user-guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download.
brooke.gibbons@uwa.edu.au
Brooke Gibbons
stereo-video, fish, annotation
EventMeasure Annotation Guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
Keywords: fish, stereo-video, annotation
EventMeasure Annotation Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/EventMeasure_annotation_guide.html
https://dresa.org.au/materials/eventmeasure-annotation-guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
tim.langlois@uwa.edu.au
Brooke Gibbons
Tim Langlois
Claude Spencer
fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...
Keywords: stereo-video, fish, sharks, habitats
Resource type: tutorial
Stereo-video workflows for fish and benthic ecologists
https://globalarchivemanual.github.io/CheckEM/index.html
https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way.
tim.langlois@uwa.edu.au
Tim Langlois
Brooke Gibbons
Claude Spencer
stereo-video, fish, sharks, habitats
ARDC Datacite API Jupyter notebook
This Jupyter notebook presents a low-barrier entry to using the DataCite REST API to mint, update, publish, and deleted DOIs and their associated metadata.
It was designed specifically to not use any third-party libraries so that it can be reused in almost any Jupyter notebook environment
Code...
Keywords: jupyter, notebook, DataCite, api, python, metadata, DOI, training material
ARDC Datacite API Jupyter notebook
https://zenodo.org/record/5574653
https://dresa.org.au/materials/ardc-datacite-api-jupyter-notebook
This Jupyter notebook presents a low-barrier entry to using the DataCite REST API to mint, update, publish, and deleted DOIs and their associated metadata.
It was designed specifically to not use any third-party libraries so that it can be reused in almost any Jupyter notebook environment
Code is presented alongside human readable comments that explain the use of each component of the notebook.
contact@ardc.edu.au
Liffers, Matthias (orcid: 0000-0002-3639-2080)
jupyter, notebook, DataCite, api, python, metadata, DOI, training material
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support