Register training material
9 materials found

Keywords: fish  or reproducibility  or Variant calling 


7 Steps towards Reproducible Research

This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.

We will also examine how Reproducible Research builds business continuity...

Keywords: reproducibility, Reproducibility, reproducible workflows

Resource type: full-course, tutorial

7 Steps towards Reproducible Research https://dresa.org.au/materials/7-steps-towards-reproducible-research This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed. We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge. The workshop can be used as self-paced or as an instructor Amanda Miotto - a.miotto@griffith.edu.au reproducibility, Reproducibility, reproducible workflows phd support
WORKSHOP: Variant calling in humans, animals and plants with Galaxy

This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.

Variant calling in polyploid organisms, including humans, plants and animals, can help determine single...

Keywords: Variant calling, Genetic Variation Analysis, SNP annotation

WORKSHOP: Variant calling in humans, animals and plants with Galaxy https://dresa.org.au/materials/workshop-variant-calling-in-humans-animals-and-plants-with-galaxy-767f1816-1c06-478c-adf4-90b3b2d32a9c This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021. Variant calling in polyploid organisms, including humans, plants and animals, can help determine single or multi-variant contributors to a phenotype. Further, sexual reproduction (as compared to asexual) combines variants in a novel manner; this can be used to determine previously unknown variant - phenotype combinations but also to track lineage and lineage associated traits (GWAS studies), that all rely on highly accurate variant calling. The ability to confidently call variants in polyploid organisms is highly dependent on the balance between the frequency of variant observations against the background of non-variant observations, and even further compounded when one considers multi-variant positions within the genome. These are some of the challenges that will be explored in the workshop. In this online workshop we focused on the tools and workflows available for variant calling in polyploid organisms in Galaxy Australia. The workshop provided opportunities for hands-on experience using Freebayes for variant calling and SnpEff and GEMINI for variant annotation. The workshop made use of data from a case study on diagnosing a genetic disease however the tools and workflows are equally applicable to other polyploid organisms and biological questions. Access to all of the tools covered in this workshop was via Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.   Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): schedule for the workshop Variant calling - humans, animals, plants - slides (PPTX and PDF): slides used in the workshop   Materials shared elsewhere: The tutorial used in this workshop is available via the Galaxy Training Network. Wolfgang Maier, Bérénice Batut, Torsten Houwaart, Anika Erxleben, Björn Grüning, 2021 Exome sequencing data analysis for diagnosing a genetic disease (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html Online; accessed 25 May 2021 Melissa Burke (melissa@biocommons.org.au) Variant calling, Genetic Variation Analysis, SNP annotation
WEBINAR: Variant interpretation: from the clinic to the lab… and back again

This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022.

Event description 

The use of genomic testing is increasing rapidly as...

Keywords: Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling

WEBINAR: Variant interpretation: from the clinic to the lab… and back again https://dresa.org.au/materials/webinar-variant-interpretation-from-the-clinic-to-the-lab-and-back-again-5c6aed91-24cd-4314-9638-5e60d51e1af1 This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022. Event description  The use of genomic testing is increasing rapidly as the cost of genome sequencing decreases. Many areas of the health workforce are upskilling in genomics to help meet the increased demand. From clinicians learning how to use the right test, for the right patient, at the right time, to medical scientists learning how to interpret and classify variants, and data scientists to learning how to better create and continuously refine the pipelines and software to handle and curate big data. In this webinar, we’ll hear from two people working at the coalface of variant interpretation – one in a diagnostic laboratory and the other in a cancer research laboratory. Naomi Baker is Medical Scientist at Victorian Clinical Genetics Services. She helps process hundreds of genomic tests per year to find the variants that cause rare diseases. She’ll explain the clinical variant interpretation processes she uses, the pipelines, professions and people involved. Joep Vissers is a Curation Team Leader, at the University of Melbourne Centre for Cancer Research, Department of Clinical Pathology. Joep, who also teaches cancer biology at the University, will describe how he uses variant interpretation in his work at the research/clinical interface, and the shift in mindset required when working with data for these different purposes. Amy Nisselle, Genomics Workforce Lead at Melbourne Genomics, will then briefly outline some of the education programs available in clinical variant interpretation. This webinar is co-presented by Australian BioCommons and Melbourne Genomics Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Variant interpretation from the clinic to the lab and back again.pdf: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/wLMhwIiK8Lw Melissa Burke (melissa@biocommons.org.au) Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling
WEBINAR: Getting started with whole genome mapping and variant calling on the command line

This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022.

Event description 

Life scientists are increasingly using whole genome...

Keywords: Genome mapping, Variant calling, Bioinformatics, Workflows

WEBINAR: Getting started with whole genome mapping and variant calling on the command line https://dresa.org.au/materials/webinar-getting-started-with-whole-genome-mapping-and-variant-calling-on-the-command-line-2046f36b-0c7a-4523-9c21-08046900d3ff This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022. Event description  Life scientists are increasingly using whole genome sequencing (WGS) to ask and answer research questions across the tree of life. Before any of this work can be done, there is the essential but challenging task of processing raw sequencing data. Processing WGS data is a computationally challenging, multi-step process used to create a map of an individual’s genome and identify genetic variant sites. The tools you use in this process and overall workflow design can look very different for different researchers, it all depends on your dataset and the research questions you’re asking. Luckily, there are lots of existing WGS processing tools and pipelines out there, but knowing where to start and what your specific needs are is hard work, no matter how experienced you are.  In this webinar we will walk through the essential steps and considerations for researchers who are running and building reproducible WGS mapping and variant calling pipelines at the command line interface. We will discuss how to choose and evaluate a pipeline that is right for your dataset and research questions, and how to get access to the compute resources you need Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. WGS mapping and variant calling _slides (PDF): A PDF copy of the slides presented during the webinar.   Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/Q2EceFyizio Melissa Burke (melissa@biocommons.org.au) Genome mapping, Variant calling, Bioinformatics, Workflows
How can software containers help your research?

This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility. 

Software Containers in research are a solution that addresses the challenge of a...

Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material

How can software containers help your research? https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.  Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers. Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g If you want to share this video please use this: Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY]. contact@ardc.edu.au Martinez, Paula Andrea (type: ProjectLeader) Sam Muirhead (type: Producer) The ARDC Communications Team (type: Editor) The ARDC Skills and Workforce Development Team (type: ProjectMember) The ARDC eResearch Infrastructure & Services (type: ProjectMember) The ARDC Nectar Cloud Services team (type: ProjectMember) containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
CheckEM User Guide

CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...

Keywords: stereo-video, fish, annotation

CheckEM User Guide https://dresa.org.au/materials/checkem-user-guide CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download. brooke.gibbons@uwa.edu.au stereo-video, fish, annotation
EventMeasure Annotation Guide

EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length

Keywords: fish, stereo-video, annotation

EventMeasure Annotation Guide https://dresa.org.au/materials/eventmeasure-annotation-guide EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length tim.langlois@uwa.edu.au fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists

Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...

Keywords: stereo-video, fish, sharks, habitats

Resource type: tutorial

Stereo-video workflows for fish and benthic ecologists https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way. tim.langlois@uwa.edu.au stereo-video, fish, sharks, habitats
10 Reproducible Research things - Building Business Continuity

The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...

Keywords: reproducibility, data management

Resource type: tutorial, video

10 Reproducible Research things - Building Business Continuity https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important. Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program. Video: https://www.youtube.com/watch?v=bANTr9RvnGg Tutorial: https://guereslib.github.io/ten-reproducible-research-things/ a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au; Sharron Stapleton Isaac Jennings reproducibility, data management masters phd ecr researcher support