Register training material
9 materials found

Keywords: fish  or reproducibility  or Statistics 


7 Steps towards Reproducible Research

This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.

We will also examine how Reproducible Research builds business continuity...

Keywords: reproducibility, Reproducibility, reproducible workflows

Resource type: full-course, tutorial

7 Steps towards Reproducible Research https://dresa.org.au/materials/7-steps-towards-reproducible-research This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed. We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge. The workshop can be used as self-paced or as an instructor Amanda Miotto - a.miotto@griffith.edu.au reproducibility, Reproducibility, reproducible workflows phd support
Tutorials to learn how to use STAN

Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.

Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB

Tutorials to learn how to use STAN https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics. https://mc-stan.org/about/team/ Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
How can software containers help your research?

This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility. 

Software Containers in research are a solution that addresses the challenge of a...

Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material

How can software containers help your research? https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.  Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers. Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g If you want to share this video please use this: Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY]. contact@ardc.edu.au Martinez, Paula Andrea (type: ProjectLeader) Sam Muirhead (type: Producer) The ARDC Communications Team (type: Editor) The ARDC Skills and Workforce Development Team (type: ProjectMember) The ARDC eResearch Infrastructure & Services (type: ProjectMember) The ARDC Nectar Cloud Services team (type: ProjectMember) containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
CheckEM User Guide

CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...

Keywords: stereo-video, fish, annotation

CheckEM User Guide https://dresa.org.au/materials/checkem-user-guide CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download. brooke.gibbons@uwa.edu.au stereo-video, fish, annotation
EventMeasure Annotation Guide

EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length

Keywords: fish, stereo-video, annotation

EventMeasure Annotation Guide https://dresa.org.au/materials/eventmeasure-annotation-guide EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length tim.langlois@uwa.edu.au fish, stereo-video, annotation
Distributional Regression modeling: Raise your research to the next level

Stanislaus Stadlmann, a statistical consultant with the Sydney Informatics Hub, conducts a masterclass on Distributional Regression.

He discusses:

  1. SIH masterclasses in general
  2. Regression Analysis: How we got here
  3. Distributional Regression and its applications

*The Sydney...

Keywords: training material, Statistics, Regression analysis

Distributional Regression modeling: Raise your research to the next level https://dresa.org.au/materials/distributional-regression-modeling-raise-your-research-to-the-next-level Stanislaus Stadlmann, a statistical consultant with the Sydney Informatics Hub, conducts a masterclass on Distributional Regression. He discusses: 1. SIH masterclasses in general 2. Regression Analysis: How we got here 3. Distributional Regression and its applications *The Sydney Informatics Hub is a Core Research Facility at The University of Sydney, enabling excellence in research* [https://sydney.edu.au/informatics-hub](https://sydney.edu.au/informatics-hub) sih.training@sydney.edu.au training material, Statistics, Regression analysis
Stereo-video workflows for fish and benthic ecologists

Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...

Keywords: stereo-video, fish, sharks, habitats

Resource type: tutorial

Stereo-video workflows for fish and benthic ecologists https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way. tim.langlois@uwa.edu.au stereo-video, fish, sharks, habitats
10 Reproducible Research things - Building Business Continuity

The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...

Keywords: reproducibility, data management

Resource type: tutorial, video

10 Reproducible Research things - Building Business Continuity https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important. Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program. Video: https://www.youtube.com/watch?v=bANTr9RvnGg Tutorial: https://guereslib.github.io/ten-reproducible-research-things/ a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au; Sharron Stapleton Isaac Jennings reproducibility, data management masters phd ecr researcher support