7 Steps towards Reproducible Research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity...
Keywords: reproducibility, Reproducibility, reproducible workflows
Resource type: full-course, tutorial
7 Steps towards Reproducible Research
https://amandamiotto.github.io/ReproducibleResearch/
https://dresa.org.au/materials/7-steps-towards-reproducible-research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge.
The workshop can be used as self-paced or as an instructor
Amanda Miotto - a.miotto@griffith.edu.au
Amanda Miotto
reproducibility, Reproducibility, reproducible workflows
phd
support
WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/records/5240578
https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
How can software containers help your research?
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a...
Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
How can software containers help your research?
https://zenodo.org/records/5091260
https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers.
Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g
If you want to share this video please use this:
Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY].
contact@ardc.edu.au
Australian Research Data Commons
Martinez, Paula Andrea (type: ProjectLeader)
Sam Muirhead (type: Producer)
The ARDC Communications Team (type: Editor)
The ARDC Skills and Workforce Development Team (type: ProjectMember)
The ARDC eResearch Infrastructure & Services (type: ProjectMember)
The ARDC Nectar Cloud Services team (type: ProjectMember)
containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
CheckEM User Guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...
Keywords: stereo-video, fish, annotation
CheckEM User Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/CheckEM_user_guide.html
https://dresa.org.au/materials/checkem-user-guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download.
brooke.gibbons@uwa.edu.au
Brooke Gibbons
stereo-video, fish, annotation
EventMeasure Annotation Guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
Keywords: fish, stereo-video, annotation
EventMeasure Annotation Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/EventMeasure_annotation_guide.html
https://dresa.org.au/materials/eventmeasure-annotation-guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
tim.langlois@uwa.edu.au
Brooke Gibbons
Tim Langlois
Claude Spencer
fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...
Keywords: stereo-video, fish, sharks, habitats
Resource type: tutorial
Stereo-video workflows for fish and benthic ecologists
https://globalarchivemanual.github.io/CheckEM/index.html
https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way.
tim.langlois@uwa.edu.au
Tim Langlois
Brooke Gibbons
Claude Spencer
stereo-video, fish, sharks, habitats
Using PennyLane on Setonix
Introduction to quantum computing
Keywords: Pawsey Supercomputing Centre, Setonix, quantum, PennyLane
Using PennyLane on Setonix
https://www.youtube.com/playlist?list=PLmu61dgAX-abmJkmKi8GR46TnvsvP3-ro
https://dresa.org.au/materials/using-pennylane-on-setonix
Introduction to quantum computing
training@pawsey.org.au
Pawsey Supercomputing Research Centre
Pawsey Supercomputing Centre, Setonix, quantum, PennyLane
Pawsey: AWS Quantum 101 Using Amazon Braket
Join us as AWS Quantum Specialists introduce quantum simulators and gate-based quantum computers, before turning to more advanced topics.
Keywords: Pawsey Supercomputing Centre, AWS, quantum, HPC
Pawsey: AWS Quantum 101 Using Amazon Braket
https://www.youtube.com/playlist?list=PLmu61dgAX-abDLr86-bG8zqfBIffu6Eh2
https://dresa.org.au/materials/pawsey-aws-quantum-101-using-amazon-braket
Join us as AWS Quantum Specialists introduce quantum simulators and gate-based quantum computers, before turning to more advanced topics.
training@pawsey.org.au
Pawsey Supercomputing Research Centre
Pawsey Supercomputing Centre, AWS, quantum, HPC
HIP Advanced Workshop
Additional topics presented about HIP, covering memory management, kernel optimisation, IO optimisation and porting CUDA to HIP.
Keywords: HIP, Pawsey Supercomputing Centre, supercomputing
HIP Advanced Workshop
https://www.youtube.com/playlist?list=PLmu61dgAX-absyWGpFsiw1TD1rgmjHZee
https://dresa.org.au/materials/hip-advanced-workshop
Additional topics presented about HIP, covering memory management, kernel optimisation, IO optimisation and porting CUDA to HIP.
training@pawsey.org.au
Pawsey Supercomputing Research Centre
HIP, Pawsey Supercomputing Centre, supercomputing
Managing Data using Acacia @ Pawsey
Acacia is Pawsey's "warm tier" or project storage. This object store is fully integrated with Setonix, Pawsey's main supercomputer, enabling fast transfer of data for project use.
These short videos introduce this high-speed object storage for hosting research data online.
Acacia is named...
Keywords: data, data skills, Acacia, Pawsey Supercomputing Centre, object storage, File systems
Managing Data using Acacia @ Pawsey
https://www.youtube.com/playlist?list=PLmu61dgAX-aYxrbqtSYHS1ufVZ9xs1AnI
https://dresa.org.au/materials/managing-data-using-acacia-pawsey
Acacia is Pawsey's "warm tier" or project storage. This object store is fully integrated with Setonix, Pawsey's main supercomputer, enabling fast transfer of data for project use.
These short videos introduce this high-speed object storage for hosting research data online.
Acacia is named after Australia’s national floral emblem the Golden Wattle – Acacia pycnantha.
training@pawsey.org.au
Pawsey Supercomputing Research Centre
data, data skills, Acacia, Pawsey Supercomputing Centre, object storage, File systems
ugrad
masters
phd
ecr
researcher
support
professional
OpenCL
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC...
Keywords: supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs
Resource type: activity
OpenCL
https://www.youtube.com/playlist?list=PLmu61dgAX-aa_lk5fby5PjuS49snHpyYL
https://dresa.org.au/materials/opencl
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC infrastructure.
training@pawsey.org.au
Toby Potter
Pawsey Supercomputing Research Centre
Pelagos
Toby Potter
supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs
masters
ecr
researcher
support
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support