7 Steps towards Reproducible Research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity...
Keywords: reproducibility, Reproducibility, reproducible workflows
Resource type: full-course, tutorial
7 Steps towards Reproducible Research
https://amandamiotto.github.io/ReproducibleResearch/
https://dresa.org.au/materials/7-steps-towards-reproducible-research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge.
The workshop can be used as self-paced or as an instructor
Amanda Miotto - a.miotto@griffith.edu.au
Amanda Miotto
reproducibility, Reproducibility, reproducible workflows
phd
support
How can software containers help your research?
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a...
Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
How can software containers help your research?
https://zenodo.org/records/5091260
https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers.
Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g
If you want to share this video please use this:
Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY].
contact@ardc.edu.au
Australian Research Data Commons
Martinez, Paula Andrea (type: ProjectLeader)
Sam Muirhead (type: Producer)
The ARDC Communications Team (type: Editor)
The ARDC Skills and Workforce Development Team (type: ProjectMember)
The ARDC eResearch Infrastructure & Services (type: ProjectMember)
The ARDC Nectar Cloud Services team (type: ProjectMember)
containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
CheckEM User Guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...
Keywords: stereo-video, fish, annotation
CheckEM User Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/CheckEM_user_guide.html
https://dresa.org.au/materials/checkem-user-guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download.
brooke.gibbons@uwa.edu.au
Brooke Gibbons
stereo-video, fish, annotation
EventMeasure Annotation Guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
Keywords: fish, stereo-video, annotation
EventMeasure Annotation Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/EventMeasure_annotation_guide.html
https://dresa.org.au/materials/eventmeasure-annotation-guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
tim.langlois@uwa.edu.au
Brooke Gibbons
Tim Langlois
Claude Spencer
fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...
Keywords: stereo-video, fish, sharks, habitats
Resource type: tutorial
Stereo-video workflows for fish and benthic ecologists
https://globalarchivemanual.github.io/CheckEM/index.html
https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way.
tim.langlois@uwa.edu.au
Tim Langlois
Brooke Gibbons
Claude Spencer
stereo-video, fish, sharks, habitats
Start Coding without Hesitation: Programming Languages Showdown
Programming is becoming more and more popular, with many researchers using programming to perform data cleaning, data manipulation, data analytics, as well as creating publication quality plots. Programming can be really beneficial for automating processes and workflows. In this webinar, we are...
Keywords: Python, R, Matlab, Julia
Start Coding without Hesitation: Programming Languages Showdown
https://intersect.org.au/training/course/coding001
https://dresa.org.au/materials/start-coding-without-hesitation-programming-languages-showdown
Programming is becoming more and more popular, with many researchers using programming to perform data cleaning, data manipulation, data analytics, as well as creating publication quality plots. Programming can be really beneficial for automating processes and workflows. In this webinar, we are exploring four of the most popular programming languages that are widely used in academia, namely Python, R, MATLAB, and Julia.
Why use Programming
An overview of Python, R, MATLAB, and Julia
Code comparison of the four programming languages
Popularity and job opportunities
Intersect’s comparison
General guidelines on how to choose the best programming language for your research
The webinar has no prerequisites.
training@intersect.org.au
Intersect Australia
Python, R, Matlab, Julia
Learn to Program: Julia
Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance...
Learn to Program: Julia
https://intersect.org.au/training/course/julia101
https://dresa.org.au/materials/learn-to-program-julia
Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance of the fastest programming languages!
This workshop expects that you are coming to Julia with some experience in the basic concepts of programming in another language. It is designed to help you migrate the basic concepts of programming that you already know to the Julia context.
Join us for this live coding workshop where we write programs that produce results, using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly.
Introduction to the JupyterLab interface for programming
Basic syntax and data types in Julia
How to load external data into Julia
Creating functions (FUNCTIONS)
Repeating actions and analysing multiple data sets (LOOPS)
Making choices (IF STATEMENTS – CONDITIONALS)
Ways to visualise data using the Plots library in Julia
Some experience with the basic concepts of programming in another language needed to attend this course. It is an intensive course that is designed to help you migrate the basic concepts of programming that you already know to the Julia context in half a day instead of a full day. If you don’t have any prior experience in programming, please consider attending one of the \Learn to Program: Python\, \Learn to Program: R\ or \Learn to Program: MATLAB\ prior to this course.
We also strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found \here\.
training@intersect.org.au
Intersect Australia
Julia
Beyond the Basics: Julia
Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance...
Beyond the Basics: Julia
https://intersect.org.au/training/course/julia201
https://dresa.org.au/materials/beyond-the-basics-julia
Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance of the fastest programming languages!
This workshop explores the more advanced features of functions in Julia, introduces widely used tools within Julia, as well as demonstrates the speed of Julia by benchmarking functions and different styles of scripting within Julia.
Join us for this live coding workshop where we write programs that produce results, using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly.
Understand the role of Types within Julia
Create functions with complex arguments
Demonstrate programming patterns of list comprehension, pipes, and anonymous functions.
Benchmark Julia code and understand how to make it fast
If you already have experience with programming, please check the topics covered in the \Learn to Program: Julia\ to ensure that you are familiar with the knowledge needed for this course.
training@intersect.org.au
Intersect Australia
Julia
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support