7 Steps towards Reproducible Research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity...
Keywords: reproducibility, Reproducibility, reproducible workflows
Resource type: full-course, tutorial
7 Steps towards Reproducible Research
https://amandamiotto.github.io/ReproducibleResearch/
https://dresa.org.au/materials/7-steps-towards-reproducible-research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge.
The workshop can be used as self-paced or as an instructor
Amanda Miotto - a.miotto@griffith.edu.au
Amanda Miotto
reproducibility, Reproducibility, reproducible workflows
phd
support
WORKSHOP: Online data analysis for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘Online data analysis for biologists’. This workshop took place on 9 September 2021.
Workshop description
Galaxy is an online platform for biological research that allows people to use computational data...
Keywords: Bioinformatics, Analysis, Workflows, Galaxy Australia
WORKSHOP: Online data analysis for biologists
https://zenodo.org/records/5775277
https://dresa.org.au/materials/workshop-online-data-analysis-for-biologists-08d66913-4ce3-4528-bdd6-0b0fcf234982
This record includes training materials associated with the Australian BioCommons workshop ‘Online data analysis for biologists’. This workshop took place on 9 September 2021.
Workshop description
Galaxy is an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
It is an open source, web-based platform for accessible, reproducible, and transparent computational biomedical research. It also captures run information so that workflows can be saved, repeated and shared efficiently via the web.
This interactive beginners workshop will provide an introduction to the Galaxy interface, histories and available tools. The material covered in this workshop is freely available through the Galaxy Training Network.
The workshop will be held via Zoom and involves a combination of presentations by the lead trainer and smaller breakout groups supported by experienced facilitators.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop
Online_data_analysis_for_biologists_extraslides (PPTX and PDF): Slides used to introduce the data set and emphasise the importance of workflows. These slides were developed by Ms Grace Hall.
Materials shared elsewhere:
The tutorial used in this workshop is available via the Galaxy Training Network.
Anne Fouilloux, Nadia Goué, Christopher Barnett, Michele Maroni, Olha Nahorna, Dave Clements, Saskia Hiltemann, 2021 Galaxy 101 for everyone (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/introduction/tutorials/galaxy-intro-101-everyone/tutorial.html Online; accessed Fri Dec 10 2021
Melissa Burke (melissa@biocommons.org.au)
Hall, Grace (orcid: 0000-0002-5105-8347)
Perreau, Vicky (orcid: 0000-0002-0773-7246)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Bioinformatics, Analysis, Workflows, Galaxy Australia
WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/records/5240578
https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia
This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.
Event description
Have you discovered a brilliant...
Keywords: Bioinformatics, Workflows, FAIR, Galaxy Australia
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia
https://zenodo.org/records/7251310
https://dresa.org.au/materials/webinar-here-s-one-we-prepared-earlier-re-creating-bioinformatics-methods-and-workflows-with-galaxy-australia-134a8bf5-3801-421f-a454-e0f9020f4871
This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.
Event description
Have you discovered a brilliant bioinformatics workflow but you’re not quite sure how to use it? In this webinar we will introduce the power of Galaxy for construction and (re)use of reproducible workflows, whether building workflows from scratch, recreating them from published descriptions and/or extracting from Galaxy histories.
Using an established bioinformatics method, we’ll show you how to:
Use the workflows creator in Galaxy Australia
Build a workflow based on a published method
Annotate workflows so that you (and others) can understand them
Make workflows finable and citable (important and very easy to do!)
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
GalaxyWorkflows_Slides (PDF): A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/IMkl6p7hkho
Melissa Burke (melissa@biocommons.org.au)
Price, Gareth (orcid: 0000-0003-2439-8650)
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Bioinformatics, Workflows, FAIR, Galaxy Australia
WEBINAR: Conservation genomics in the age of extinction
This record includes training materials associated with the Australian BioCommons webinar ‘Conservation genomics in the age of extinction’. This webinar took place on 8 March 2022.
Event description
Biodiversity is crashing and millions of plant and animal species are at the edge of...
Keywords: Conservation genomics, Genomics, Bioinformatics, Sequencing, Threatened Species Initiative, Galaxy Australia
WEBINAR: Conservation genomics in the age of extinction
https://zenodo.org/records/6350785
https://dresa.org.au/materials/webinar-conservation-genomics-in-the-age-of-extinction-c7718a53-68ee-4c69-adf4-cd0550710d3f
This record includes training materials associated with the Australian BioCommons webinar ‘Conservation genomics in the age of extinction’. This webinar took place on 8 March 2022.
Event description
Biodiversity is crashing and millions of plant and animal species are at the edge of extinction. Understanding the genetic diversity of these species is an important tool for conservation biology but obtaining high quality genomes for threatened species is not always straightforward.
In this webinar Dr Carolyn Hogg speaks about the work she has been doing with the Threatened Species Initiative to build genomic resources to understand and protect Australia’s threatened species. Using examples such as the Kroombit Tinker Frog and the Greater Bilby, Carolyn describes some of the complexities and challenges of generating genomes from short reads and HiFi reads for critically endangered species. She outlines the technologies and resources being used and how these are bridging the gap between genomicists, bioinformaticians and conservation experts to help save Australian species.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/Bl7CaiGQ91s
Melissa Burke (melissa@biocommons.org.au)
Hogg, Carolyn (orcid: 0000-0002-6328-398X)
Conservation genomics, Genomics, Bioinformatics, Sequencing, Threatened Species Initiative, Galaxy Australia
WORKSHOP: Hybrid de novo genome assembly
This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.
Workshop description
It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches...
Keywords: Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly
WORKSHOP: Hybrid de novo genome assembly
https://zenodo.org/records/5781781
https://dresa.org.au/materials/workshop-hybrid-de-novo-genome-assembly-714004ba-0348-47c8-a68f-038a1f8ccfb1
This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.
Workshop description
It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches which enable research on organisms for which reference genomes were not previously available. These approaches combine the strengths of short (Illumina) and long (PacBio or Nanopore) read technologies, resulting in improved assembly quality.
In this workshop we will learn how to create and assess genome assemblies from Illumina and Nanopore reads using data from a Bacillus Subtilis strain. We will demonstrate two hybrid-assembly methods using the tools Flye, Pilon, and Unicycler to perform assembly and subsequent error correction. You will learn how to visualise input read sets and the assemblies produced at each stage and assess the quality of the final assembly.
All analyses will be performed using Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
This workshop is presented by the Australian BioCommons and Melbourne Bioinformatics with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Materials shared elsewhere:
This workshop follows the tutorial ‘Hybrid genome assembly - Nanopore and Illumina’ developed by Melbourne Bioinformatics.
https://www.melbournebioinformatics.org.au/tutorials/tutorials/hybrid_assembly/nanopore_assembly/
Melissa Burke (melissa@biocommons.org.au)
Hall, Grace (orcid: 0000-0002-5105-8347)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Makunin, Igor
Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly
How can software containers help your research?
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a...
Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
How can software containers help your research?
https://zenodo.org/records/5091260
https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf
This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.
Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers.
Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g
If you want to share this video please use this:
Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY].
contact@ardc.edu.au
Australian Research Data Commons
Martinez, Paula Andrea (type: ProjectLeader)
Sam Muirhead (type: Producer)
The ARDC Communications Team (type: Editor)
The ARDC Skills and Workforce Development Team (type: ProjectMember)
The ARDC eResearch Infrastructure & Services (type: ProjectMember)
The ARDC Nectar Cloud Services team (type: ProjectMember)
containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
CheckEM User Guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...
Keywords: stereo-video, fish, annotation
CheckEM User Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/CheckEM_user_guide.html
https://dresa.org.au/materials/checkem-user-guide
CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download.
brooke.gibbons@uwa.edu.au
Brooke Gibbons
stereo-video, fish, annotation
EventMeasure Annotation Guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
Keywords: fish, stereo-video, annotation
EventMeasure Annotation Guide
https://globalarchivemanual.github.io/CheckEM/articles/manuals/EventMeasure_annotation_guide.html
https://dresa.org.au/materials/eventmeasure-annotation-guide
EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length
tim.langlois@uwa.edu.au
Brooke Gibbons
Tim Langlois
Claude Spencer
fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...
Keywords: stereo-video, fish, sharks, habitats
Resource type: tutorial
Stereo-video workflows for fish and benthic ecologists
https://globalarchivemanual.github.io/CheckEM/index.html
https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists
Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way.
tim.langlois@uwa.edu.au
Tim Langlois
Brooke Gibbons
Claude Spencer
stereo-video, fish, sharks, habitats
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support
Galaxy Training
Galaxy is a hosted web-accessible platform that lets you conduct accessible, reproducible, and transparent computational biological research. It is an international, community driven effort to make it easy for life scientists to analyse their data for free and without the need for programmatic...
Keywords: Galaxy Australia, Galaxy Project, Bioinformatics, Data analysis
Galaxy Training
https://training.galaxyproject.org/training-material/
https://dresa.org.au/materials/galaxy-training
Galaxy is a hosted web-accessible platform that lets you conduct accessible, reproducible, and transparent computational biological research. It is an international, community driven effort to make it easy for life scientists to analyse their data for free and without the need for programmatic skills.
This is a collection of tutorials developed and maintained by the worldwide Galaxy community that show you how to analyse a variety of biological data using Galaxy.
Melissa (melissa@biocommons.org.au)
Galaxy Australia, Galaxy Project, Bioinformatics, Data analysis