Register training material
12 materials found

Keywords: fish  or reproducibility  or Deep learning 


7 Steps towards Reproducible Research

This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.

We will also examine how Reproducible Research builds business continuity...

Keywords: reproducibility, Reproducibility, reproducible workflows

Resource type: full-course, tutorial

7 Steps towards Reproducible Research https://dresa.org.au/materials/7-steps-towards-reproducible-research This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed. We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge. The workshop can be used as self-paced or as an instructor Amanda Miotto - a.miotto@griffith.edu.au reproducibility, Reproducibility, reproducible workflows phd support
WEBINAR: Getting started with deep learning

This record includes training materials associated with the Australian BioCommons webinar  ‘Getting started with deep learning’. This webinar took place on 21 July 2021.

Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep...

Keywords: Deep learning, Neural networks, Machine learning

WEBINAR: Getting started with deep learning https://dresa.org.au/materials/webinar-getting-started-with-deep-learning-986aa2d2-594a-4a7f-836c-44d6e9d5d017 This record includes training materials associated with the Australian BioCommons webinar  ‘Getting started with deep learning’. This webinar took place on 21 July 2021. Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning. The webinar is followed by a short Q&A session. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation   Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/I1TmpnZUuiQ Melissa Burke (melissa@biocommons.org.au) Deep learning, Neural networks, Machine learning
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0 This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
How can software containers help your research?

This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility. 

Software Containers in research are a solution that addresses the challenge of a...

Keywords: containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material

How can software containers help your research? https://dresa.org.au/materials/how-can-software-containers-help-your-research-ca0f9d41-d83b-463b-a548-402c6c642fbf This video explains software containers to a research audience. It is an introduction to why containers are beneficial for research. These benefits are standardisation, portability, reliability and reproducibility.  Software Containers in research are a solution that addresses the challenge of a replicable computational environment and supports reproducibility of research results. Understanding the concept of software containers enables researchers to better communicate their research needs with their colleagues and other researchers using and developing containers. Watch the video here: https://www.youtube.com/watch?v=HelrQnm3v4g If you want to share this video please use this: Australian Research Data Commons, 2021. How can software containers help your research?. [video] Available at: https://www.youtube.com/watch?v=HelrQnm3v4g DOI: http://doi.org/10.5281/zenodo.5091260 [Accessed dd Month YYYY]. contact@ardc.edu.au Martinez, Paula Andrea (type: ProjectLeader) Sam Muirhead (type: Producer) The ARDC Communications Team (type: Editor) The ARDC Skills and Workforce Development Team (type: ProjectMember) The ARDC eResearch Infrastructure & Services (type: ProjectMember) The ARDC Nectar Cloud Services team (type: ProjectMember) containers, software, research, reproducibility, RSE, standard, agility, portable, reusable, code, application, reproducible, standardisation, package, system, cloud, server, version, reliability, program, collaborator, ARDC_AU, training material
CheckEM User Guide

CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...

Keywords: stereo-video, fish, annotation

CheckEM User Guide https://dresa.org.au/materials/checkem-user-guide CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download. brooke.gibbons@uwa.edu.au stereo-video, fish, annotation
EventMeasure Annotation Guide

EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length

Keywords: fish, stereo-video, annotation

EventMeasure Annotation Guide https://dresa.org.au/materials/eventmeasure-annotation-guide EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length tim.langlois@uwa.edu.au fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists

Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...

Keywords: stereo-video, fish, sharks, habitats

Resource type: tutorial

Stereo-video workflows for fish and benthic ecologists https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way. tim.langlois@uwa.edu.au stereo-video, fish, sharks, habitats
10 Reproducible Research things - Building Business Continuity

The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...

Keywords: reproducibility, data management

Resource type: tutorial, video

10 Reproducible Research things - Building Business Continuity https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important. Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program. Video: https://www.youtube.com/watch?v=bANTr9RvnGg Tutorial: https://guereslib.github.io/ten-reproducible-research-things/ a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au; Sharron Stapleton Isaac Jennings reproducibility, data management masters phd ecr researcher support
Deep Learning for Natural Language Processing

This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for...

Keywords: Deep learning, NLP, Machine learning

Resource type: presentation, tutorial

Deep Learning for Natural Language Processing https://dresa.org.au/materials/deep-learning-for-natural-language-processing This workshop is designed to be instructor led and consists of two parts. Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset. Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for attendees to train their own RNN. The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop introduces natural language as data for deep learning. We discuss various techniques and software packages (e.g. python strings, RegEx, NLTK, Word2Vec) that help us convert, clean, and formalise text data “in the wild” for use in a deep learning model. We then explore the training and testing of a Recurrent Neural Network on the data to complete a real world task. We will be using TensorFlow v2 for this purpose. datascienceplatform@monash.edu Deep learning, NLP, Machine learning
Getting Started with Deep Learning

This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning...

Keywords: Deep learning, Machine learning

Resource type: presentation

Getting Started with Deep Learning https://dresa.org.au/materials/getting-started-with-deep-learning This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning application. The lecture also provides pointers to various resources you could use to gain a stronger foothold in deep learning. This lecture is targeted at researchers who may be complete beginners in machine learning, deep learning, or even with programming, but who would like to get into the space to build AI systems hands-on. datascienceplatform@monash.edu Deep learning, Machine learning
Semi-Supervised Deep Learning

Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled...

Keywords: Deep learning, Machine learning, semi-supervised

Resource type: presentation, tutorial

Semi-Supervised Deep Learning https://dresa.org.au/materials/semi-supervised-deep-learning Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled data. If successful, it allows better training of a model despite the limited amount of labelled data available. This workshop is designed to be instructor led and covers various semi-supervised learning techniques available in the literature. The workshop consists of a lecture introducing at a high level a selection of techniques that are suitable for semi-supervised deep learning. We discuss how these techniques can be implemented and the underlying assumptions they require. The lecture is followed by a hands-on session where attendees implement a semi-supervised learning technique to train a neural network. We observe and discuss the changing performance and behaviour of the network as varying degrees of labelled and unlabelled data is provided to the network during training. datascienceplatform@monash.edu Deep learning, Machine learning, semi-supervised
Introduction to Deep Learning and TensorFlow

This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain...

Keywords: Deep learning, convolutional neural network, tensorflow, Machine learning

Resource type: presentation, tutorial

Introduction to Deep Learning and TensorFlow https://dresa.org.au/materials/introduction-to-deep-learning-and-tensorflow This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise. Part 1 - Introduction to Deep Learning and TensorFlow Part 2 - Introduction to Convolutional Neural Networks The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop is an introduction to how deep learning works and how you could create a neural network using TensorFlow v2. We start by learning the basics of deep learning including what a neural network is, how information passes through the network, and how the network learns from data through the automated process of gradient descent. Workshop attendees would build, train and evaluate a neural network using a cloud GPU (Google Colab). In part 2, we look at image data and how we could train a convolution neural network to classify images. Workshop attendees will extend their knowledge from the first part to design, train and evaluate this convolutional neural network. datascienceplatform@monash.edu Deep learning, convolutional neural network, tensorflow, Machine learning