Register training material
7 materials found

Keywords: fish  or FAIR data 


ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

The course structure was based on 'FAIR Data in the...

Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided-2d794a84-f0ff-4e11-a39c-fa8ea481e097 FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub. contact@ardc.edu.au training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
CheckEM User Guide

CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...

Keywords: stereo-video, fish, annotation

CheckEM User Guide https://dresa.org.au/materials/checkem-user-guide CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download. brooke.gibbons@uwa.edu.au stereo-video, fish, annotation
EventMeasure Annotation Guide

EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length

Keywords: fish, stereo-video, annotation

EventMeasure Annotation Guide https://dresa.org.au/materials/eventmeasure-annotation-guide EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length tim.langlois@uwa.edu.au fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists

Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...

Keywords: stereo-video, fish, sharks, habitats

Resource type: tutorial

Stereo-video workflows for fish and benthic ecologists https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way. tim.langlois@uwa.edu.au stereo-video, fish, sharks, habitats
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

The course structure was based on 'FAIR Data in the...

Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided-bba41a59-8479-4f4f-b9ee-337b9eb294bf FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub. contact@ardc.edu.au training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
Research Data Management (RDM) Online Orientation Module (Macquarie University)

This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata,...

Keywords: research data, data management, FAIR data, training

Resource type: quiz, activity, other

Research Data Management (RDM) Online Orientation Module (Macquarie University) https://dresa.org.au/materials/macquarie-university-research-data-management-rdm-online This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify. The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata, benefits of data sharing, licensing, repositories, and best practice including the FAIR principles. Embedded activities and examples help extend learner experience and awareness. The course was designed to assist research students and early career researchers in complying with policies and legislative requirements, understand safe data practices, raise awareness of the benefits of data curation and data sharing (efficiency and impact) and equip them with the required knowledge to plan their data management early in their projects. This course is divided into four sections 1. Crawl - What is Research Data and why care for it? Policy and legislative requirements. The Research Data Life-cycle. Data Management Planning (~30 mins) 2. Walk - Data sensitivity, identifiability, storage, and security (~60 mins) 3. Run - Record keeping, data retention, file naming, folder structures, version control, metadata, data sharing, open data, licences, data repositories, data citation, and ethics (~75 mins) 4. Jump - Best practice FAIR data principles (~45 mins) 5. Fight - Review - a quiz designed to review and reinforce knowledge (~15 mins) https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0 * *Password: "FAIR" *Password: "FAIR" Any queries or suggestions for course improvement can be directed to the Macquarie University Research Integrity Team: Dr Paul Sou (paul.sou@mq.edu.au) or Dr Shannon Smith (shannon.smith@mq.edu.au). Scorm files can be made available upon request. research data, data management, FAIR data, training
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

Keywords: training material, FAIR data, research data, data management, FAIR

Resource type: presentation, quiz, activity

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. ARDC Contact us: https://ardc.edu.au/contact-us/ training material, FAIR data, research data, data management, FAIR phd ecr researcher support