Tutorials to learn how to use STAN
Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.
Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Tutorials to learn how to use STAN
https://mc-stan.org/users/documentation/tutorials.html
https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan
Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.
https://mc-stan.org/about/team/
Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Species Distribution Modelling in R
This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.
Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting...
Keywords: Species Distribution Modelling, Ecology, R software, EcoCommons
Species Distribution Modelling in R
https://www.ecocommons.org.au/educational-material4-mastering-species-distribution-modelling-in-r/
https://dresa.org.au/materials/species-distribution-modelling-in-r
This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.
Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting your model, 5. model evaluation
Scripts and files are available here:
https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts
Scripts for all four modules are here: https://www.ecocommons.org.au/wp-content/uploads/EcoCommons_steps_1_to_4.html
https://www.ecocommons.org.au/contact/
https://orcid.org/0000-0002-1359-5133
Species Distribution Modelling, Ecology, R software, EcoCommons
ugrad
mbr
phd
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data...
Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/7072910
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.
We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.
This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
scRNAseq_Slides (PDF): Slides used to introduce topics
scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop
scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants
scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’
https://swbioinf.github.io/scRNAseqInR_Doco/index.html
This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.
It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Mehdi, Ahmed (orcid: 0000-0002-9300-2341)
Matigan, Nick
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Whitfield, Holly (orcid: 0000-0002-7282-387X)
Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/records/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
Spreadsheets, organising data and first steps with R
Manipulating and analysing data with dplyr
Data visualisation
Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Recommended resources (PDF): A list of resources recommended by trainers and participants
Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/records/5781776
https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
Materials shared elsewhere:
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a...
Keywords: Small satellites, metadata, vocabularies, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
https://zenodo.org/records/5832057
https://dresa.org.au/materials/metasat-an-open-collaboratively-developed-metadata-toolkit-to-support-the-future-of-space-exploration-49af7d4d-f0d1-4f95-9fbe-afbd45170a6a
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a longstanding need for a vocabulary to span these community standards. A vocabulary to annotate the data and information outputs of these satellite missions, to enable search across disparate data repositories, and provide support for application of analytical services to retrieved datasets.
A common problem among small satellite teams is finding information about how other small satellites were put together, what parts worked well, what weren't compatible, what were the mission goals and outcomes. A lot of this information can be found, but it's not usually described in a consistent and searchable way across projects. MetaSat helps by building a uniform language of description which can be embedded into small satellite databases and tools to connect information across projects.
Although a relatively new vocabulary initiative, MetaSat has secured early adoption by SatNOGS, a global network of ground stations that collects, manages & enables access to satellite observations. Also partnering with NASA's Small Satellite Reliability Initiative, and in discussion with NASA concerning implementation of the vocabulary in other areas of its information infrastructure.
You can watch the full presentation on YouTube here: https://www.youtube.com/watch?v=uaCOzNL1eh4
contact@ardc.edu.au
Bouquin, Daina (orcid: 0000-0003-2626-3688)
Chivvis, Daniel (orcid: 0000-0001-6656-160X)
Small satellites, metadata, vocabularies, training material
ARDC Training Materials Metadata Checklist v1.1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
Keywords: checklist, Training material, FAIR, standard, requirements, metadata
ARDC Training Materials Metadata Checklist v1.1
https://zenodo.org/records/5276003
https://dresa.org.au/materials/ardc-training-materials-metadata-checklist-v1-1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
checklist, Training material, FAIR, standard, requirements, metadata
Why am I being asked for metadata about my research data?
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project...
Keywords: metadata, research data, data collections, data citation, data retention project, training material
Why am I being asked for metadata about my research data?
https://zenodo.org/records/5778322
https://dresa.org.au/materials/why-am-i-being-asked-for-metadata-about-my-research-data-03b1895a-44bf-4961-a0a3-bd4770297236
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project https://ardc.edu.au/collaborations/strategic-activities/data-retention-project/.
It is for researchers at any institution in Australia.
contact@ardc.edu.au
Australian Research Data Commons
metadata, research data, data collections, data citation, data retention project, training material
VOSON Lab Code Blog
The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.
Keywords: visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics
Resource type: tutorial, other
VOSON Lab Code Blog
https://vosonlab.github.io/
https://dresa.org.au/materials/voson-lab-code-blog
The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.
robert.ackland@anu.edu.au
visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics
researcher
support
phd
masters
ARDC Datacite API Jupyter notebook
This Jupyter notebook presents a low-barrier entry to using the DataCite REST API to mint, update, publish, and deleted DOIs and their associated metadata.
It was designed specifically to not use any third-party libraries so that it can be reused in almost any Jupyter notebook environment
Code...
Keywords: jupyter, notebook, DataCite, api, python, metadata, DOI, training material
ARDC Datacite API Jupyter notebook
https://zenodo.org/record/5574653
https://dresa.org.au/materials/ardc-datacite-api-jupyter-notebook
This Jupyter notebook presents a low-barrier entry to using the DataCite REST API to mint, update, publish, and deleted DOIs and their associated metadata.
It was designed specifically to not use any third-party libraries so that it can be reused in almost any Jupyter notebook environment
Code is presented alongside human readable comments that explain the use of each component of the notebook.
contact@ardc.edu.au
Liffers, Matthias (orcid: 0000-0002-3639-2080)
jupyter, notebook, DataCite, api, python, metadata, DOI, training material