Register training material
14 materials found

Keywords: R software  or data management 


ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components

The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging...

Keywords: training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure

ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components https://dresa.org.au/materials/ardc-digital-research-capabilities-and-skills-framework-the-framework-and-its-components The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging opportunities in data management, data analysis, data linking, AI, and machine learning. The framework aligns with technological advancements and encourages ongoing discussion and contributions to evolve the coverage of digital research skills. The framework focuses on digital research skills, excluding broader professional skills, and is intended for a wide range of stakeholders. It provides a structured approach for project teams and organisations to develop and enhance their digital research skills through six main components: a skills taxonomy, a skills glossary, a list of generalised roles, roles and skills-related profiles, learning paths, and a skills and roles matrix. The skills taxonomy classifies digital research skills into four capability families: Governance, Data, Software, and Digital Research Infrastructure Management. It provides a standard terminology for identifying and describing these skills. contact@ardc.edu.au Russell, Keith (type: Editor) Wong, Adeline (type: Editor) Lyrtzis, Ellen (type: Editor) training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure
Tutorials to learn how to use STAN

Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.

Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB

Tutorials to learn how to use STAN https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics. https://mc-stan.org/about/team/ Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Species Distribution Modelling in R

This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.

Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting...

Keywords: Species Distribution Modelling, Ecology, R software, EcoCommons

Species Distribution Modelling in R https://dresa.org.au/materials/species-distribution-modelling-in-r This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools. Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting your model, 5. model evaluation Scripts and files are available here: https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts Scripts for all four modules are here: https://www.ecocommons.org.au/wp-content/uploads/EcoCommons_steps_1_to_4.html https://www.ecocommons.org.au/contact/ Species Distribution Modelling, Ecology, R software, EcoCommons ugrad mbr phd
WORKSHOP: Single cell RNAseq analysis in R

This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.

Event description

Analysis and interpretation of single cell RNAseq (scRNAseq) data...

Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq

WORKSHOP: Single cell RNAseq analysis in R https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945 This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022. Event description Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.  We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. scRNAseq_Slides (PDF): Slides used to introduce topics scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.   Materials shared elsewhere: This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’ https://swbioinf.github.io/scRNAseqInR_Doco/index.html This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here. Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Working with genomics sequences and features in R with Bioconductor

This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.

Workshop description

Explore the many useful functions that the Bioconductor...

Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis

WORKSHOP: Working with genomics sequences and features in R with Bioconductor https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021. Workshop description Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.  DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations. This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.  This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings   Materials shared elsewhere: This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison. https://monashdatafluency.github.io/r-bioc-2/ Melissa Burke (melissa@biocommons.org.au) R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
Role profiles for the Bureau's Stewardship Model

This presentation provides an overview of the approach being taken in the creation of a Data Stewardship framework that looks at the tools, guidance, skills and clarity of data stewardship roles at the Bureau of Meteorology. A major focus of the framework is the creation of role profiles which...

Keywords: role profiles, data stewardship, data governance, data management, skills, training, training material

Role profiles for the Bureau's Stewardship Model https://dresa.org.au/materials/role-profiles-for-the-bureau-s-stewardship-model-19ee77b4-d15e-42da-96b4-9e3056d1b3e7 This presentation provides an overview of the approach being taken in the creation of a Data Stewardship framework that looks at the tools, guidance, skills and clarity of data stewardship roles at the Bureau of Meteorology. A major focus of the framework is the creation of role profiles which provide the role description, assignment and key responsibilities. You can watch the YouTube video here: https://youtu.be/RLf6B-NIffU contact@ardc.edu.au role profiles, data stewardship, data governance, data management, skills, training, training material
Research Data Governance

This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders.

If you want to share...

Keywords: data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material

Research Data Governance https://dresa.org.au/materials/research-data-governance-6ad9ab90-1a29-41db-b4aa-f1988501530d This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders. If you want to share the video please use this: Australian Research Data Commons, 2021. Research Data Governance. [video] Available at: https://youtu.be/K_xVQRdgCIc  DOI: http://doi.org/10.5281/zenodo.5044585 [Accessed dd Month YYYY]. contact@ardc.edu.au Martinez, Paula Andrea (type: ProjectLeader) Wilkinson, Max (type: Editor) Callaghan,Shannon (type: Editor) Savill, Jo (type: Editor) Kang, Kristan (type: Editor) Levett, Kerry (type: Editor) Russell, Keith (type: Editor) Simons, Natasha (type: Editor) data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material
Developing an organisation-wide framework to transform and uplift data capabilities

At the Bureau, data is the core of everything we do. We collect millions of observations from our networks and external sources and convert these into essential weather, climate, water and ocean services. To respond effectively to the rapidly evolving data landscape, the Data 2022 and Beyond...

Keywords: data skills, research data framework, data management, data governance, data skills uplift, data capabilities, skills development, innovative technologies, stakeholder engagement, training material

Developing an organisation-wide framework to transform and uplift data capabilities https://dresa.org.au/materials/developing-an-organisation-wide-framework-to-transform-and-uplift-data-capabilities-dfc4f34d-3b4e-4d2b-88bb-7b0ca5266798 At the Bureau, data is the core of everything we do. We collect millions of observations from our networks and external sources and convert these into essential weather, climate, water and ocean services. To respond effectively to the rapidly evolving data landscape, the Data 2022 and Beyond approach has been developed to position the organisation to maximise the impact and value of data. The approach means transforming our data governance, practices and processes. It provides opportunities to leverage, enhance and grow data skills and competencies, while harnessing innovative technologies and methodologies for managing and using data. The Bureau will highlight the complexities of developing an organisation wide data management program in an operational environment and share some examples, learnings and reflections on the uplift journey so far. Key topics will include establishing the team, resources and tools to enhance data governance practices as well as engaging and collaborating with stakeholders. contact@ardc.edu.au data skills, research data framework, data management, data governance, data skills uplift, data capabilities, skills development, innovative technologies, stakeholder engagement, training material
Skills initiatives at TERN

This presentation provides insight into current training efforts at TERN around data collection, data processing and data access and analytics. Highlighting various modes of training including hands-on data collection training, tutorials on deriving data, workshops, user manuals and training at...

Keywords: skills, training, infrastructure management, data management, TERN, ecosystems, training material

Skills initiatives at TERN https://dresa.org.au/materials/skills-initiatives-at-tern-e5ed5d17-a5c3-4da0-a240-82b01f7d1f25 This presentation provides insight into current training efforts at TERN around data collection, data processing and data access and analytics. Highlighting various modes of training including hands-on data collection training, tutorials on deriving data, workshops, user manuals and training at domain conferences. A list of resources and tools has also been provided for those interested in wanting to know more. You can watch the video on YouTube here: https://youtu.be/mgGuKUGCu2g contact@ardc.edu.au skills, training, infrastructure management, data management, TERN, ecosystems, training material
National Transfusion Dataset (NTD) Data Extraction Guide

A guide for hospital sites contributing data to the NTD.

Keywords: data management

National Transfusion Dataset (NTD) Data Extraction Guide https://dresa.org.au/materials/national-transfusion-dataset-ntd-data-extraction-guide A guide for hospital sites contributing data to the NTD. sphpm.ntd@monash.edu data management
VOSON Lab Code Blog

The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.

Keywords: visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics

Resource type: tutorial, other

VOSON Lab Code Blog https://dresa.org.au/materials/voson-lab-code-blog The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages. robert.ackland@anu.edu.au visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics researcher support phd masters
10 Reproducible Research things - Building Business Continuity

The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...

Keywords: reproducibility, data management

Resource type: tutorial, video

10 Reproducible Research things - Building Business Continuity https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important. Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program. Video: https://www.youtube.com/watch?v=bANTr9RvnGg Tutorial: https://guereslib.github.io/ten-reproducible-research-things/ a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au; Sharron Stapleton Isaac Jennings reproducibility, data management masters phd ecr researcher support
Research Data Management (RDM) Online Orientation Module (Macquarie University)

This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata,...

Keywords: research data, data management, FAIR data, training

Resource type: quiz, activity, other

Research Data Management (RDM) Online Orientation Module (Macquarie University) https://dresa.org.au/materials/macquarie-university-research-data-management-rdm-online This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify. The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata, benefits of data sharing, licensing, repositories, and best practice including the FAIR principles. Embedded activities and examples help extend learner experience and awareness. The course was designed to assist research students and early career researchers in complying with policies and legislative requirements, understand safe data practices, raise awareness of the benefits of data curation and data sharing (efficiency and impact) and equip them with the required knowledge to plan their data management early in their projects. This course is divided into four sections 1. Crawl - What is Research Data and why care for it? Policy and legislative requirements. The Research Data Life-cycle. Data Management Planning (~30 mins) 2. Walk - Data sensitivity, identifiability, storage, and security (~60 mins) 3. Run - Record keeping, data retention, file naming, folder structures, version control, metadata, data sharing, open data, licences, data repositories, data citation, and ethics (~75 mins) 4. Jump - Best practice FAIR data principles (~45 mins) 5. Fight - Review - a quiz designed to review and reinforce knowledge (~15 mins) https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0 * *Password: "FAIR" *Password: "FAIR" Any queries or suggestions for course improvement can be directed to the Macquarie University Research Integrity Team: Dr Paul Sou (paul.sou@mq.edu.au) or Dr Shannon Smith (shannon.smith@mq.edu.au). Scorm files can be made available upon request. research data, data management, FAIR data, training