Randomised Controlled Trials with REDCap
REDCap is a powerful and extensible application for managing and running longitudinal data collection activities. In this course, learn how to manage a Randomised Controlled Trial using REDCap, including the randomisation module, adverse event reporting and automated participant withdrawals. This...
Randomised Controlled Trials with REDCap
https://intersect.org.au/training/course/redcap202
https://dresa.org.au/materials/randomised-controlled-trials-with-redcap
REDCap is a powerful and extensible application for managing and running longitudinal data collection activities. In this course, learn how to manage a Randomised Controlled Trial using REDCap, including the randomisation module, adverse event reporting and automated participant withdrawals. This course will introduce some of REDCap’s more advanced features for running randomised trials, and builds on the material taught in REDCAP201 – Longitudinal Trials with REDCap.
- Create Data Access Groups (DAGs) and assign users to manage trial sites
- Build randomisation allocation table
- Enable and implement participant randomisation module
- Design an adverse reporting system using Automated Survey Invitations and Alerts
- Create an automated participant withdrawal process
- Customise record dashboards
Learners should have a solid understanding of REDCap and be familiar with the content of [Data Capture and Surveys with REDCap](https://intersectaustralia.github.io/training/REDCAP101/) and [Longitudinal Trials with REDCap](https://intersectaustralia.github.io/training/REDCAP201/).
training@intersect.org.au
Intersect Australia
REDCap
Tutorials to learn how to use STAN
Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.
Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Tutorials to learn how to use STAN
https://mc-stan.org/users/documentation/tutorials.html
https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan
Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.
https://mc-stan.org/about/team/
Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Species Distribution Modelling in R
This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.
Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting...
Keywords: Species Distribution Modelling, Ecology, R software, EcoCommons
Species Distribution Modelling in R
https://www.ecocommons.org.au/educational-material4-mastering-species-distribution-modelling-in-r/
https://dresa.org.au/materials/species-distribution-modelling-in-r
This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.
Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting your model, 5. model evaluation
Scripts and files are available here:
https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts
Scripts for all four modules are here: https://www.ecocommons.org.au/wp-content/uploads/EcoCommons_steps_1_to_4.html
https://www.ecocommons.org.au/contact/
https://orcid.org/0000-0002-1359-5133
Species Distribution Modelling, Ecology, R software, EcoCommons
ugrad
mbr
phd
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data...
Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/7072910
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.
We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.
This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
scRNAseq_Slides (PDF): Slides used to introduce topics
scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop
scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants
scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’
https://swbioinf.github.io/scRNAseqInR_Doco/index.html
This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.
It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Mehdi, Ahmed (orcid: 0000-0002-9300-2341)
Matigan, Nick
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Whitfield, Holly (orcid: 0000-0002-7282-387X)
Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/records/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
Spreadsheets, organising data and first steps with R
Manipulating and analysing data with dplyr
Data visualisation
Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Recommended resources (PDF): A list of resources recommended by trainers and participants
Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/records/5781776
https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
Materials shared elsewhere:
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
VOSON Lab Code Blog
The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.
Keywords: visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics
Resource type: tutorial, other
VOSON Lab Code Blog
https://vosonlab.github.io/
https://dresa.org.au/materials/voson-lab-code-blog
The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.
robert.ackland@anu.edu.au
visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics
researcher
support
phd
masters
Data Capture and Surveys with REDCap
Would you like to enable secure and reliable data collection forms and manage online surveys? Would your study benefit from web-based data entry? Research Electronic Data Capture (REDCap) might be for you.
This course will introduce you to REDCap, a rapidly evolving web tool developed by...
Data Capture and Surveys with REDCap
https://intersect.org.au/training/course/redcap101
https://dresa.org.au/materials/data-capture-and-surveys-with-redcap
Would you like to enable secure and reliable data collection forms and manage online surveys? Would your study benefit from web-based data entry? Research Electronic Data Capture (REDCap) might be for you.
This course will introduce you to REDCap, a rapidly evolving web tool developed by researchers for researchers. REDCap features a high level of security, and a high degree of customisability for your forms and advanced user access control. It also features free, unlimited survey distribution functionality and a sophisticated export module with support for all standard statistical programs.
Get started with REDCap
Create and set up projects
Design forms and surveys using the online designer
Learn how to use branching logic, piping, and calculations
Enter data via forms and distribute surveys
Create, view and export data reports
Add collaborators and set their privileges
The course has no prerequisites.
training@intersect.org.au
Intersect Australia
REDCap
Longitudinal Trials with REDCap
REDCap is a powerful and extensible application for managing and running longitudinal data collection activities. With powerful features such as organising data collection instruments into predefined events, you can shepherd your participants through a complex survey at various time points with...
Longitudinal Trials with REDCap
https://intersect.org.au/training/course/redcap201
https://dresa.org.au/materials/longitudinal-trials-with-redcap
REDCap is a powerful and extensible application for managing and running longitudinal data collection activities. With powerful features such as organising data collection instruments into predefined events, you can shepherd your participants through a complex survey at various time points with very little configuration.
This course will introduce some of REDCap’s more advanced features for running longitudinal studies, and builds on the foundational material taught in REDCAP101 – Managing Data Capture and Surveys with REDCap.
Build a longitudinal project
Manage participants throughout multiple events
Configure and use Automated Survey Invitations
Use Smart Variables to add powerful features to your logic
Take advantage of high-granularity permissions for your collaborators
Understand the data structure of a longitudinal project
This course requires the participant to have a fairly good basic knowledge of REDCap. To come up to speed, consider taking our \Data Capture and Surveys with REDCap\ workshop.
training@intersect.org.au
Intersect Australia
REDCap
Survey Tools in Research: REDCap and Qualtrics
Now more than ever researchers are needing to embrace electronic data capture methods to keep their research moving in the midst of social distancing restrictions and decreased access to survey participants. Using a research specific survey tool can not only solve this problem, but also set your...
Keywords: REDCap, Qualtrics
Survey Tools in Research: REDCap and Qualtrics
https://intersect.org.au/training/course/surveys001
https://dresa.org.au/materials/survey-tools-in-research-redcap-and-qualtrics
Now more than ever researchers are needing to embrace electronic data capture methods to keep their research moving in the midst of social distancing restrictions and decreased access to survey participants. Using a research specific survey tool can not only solve this problem, but also set your research up for success through intuitive data collection and validation, scheduling and reporting.
This webinar will introduce and compare two of the most popular research tools for the collection of survey data and patient records: REDCap and Qualtrics.
Electronic Data Capture: Surveys vs Forms
Confidential vs Anonymous data collection
Strengths and weaknesses of Qualtrics and REDCap
Real-life use cases for each tool
Using survey tools for longitudinal studies
The webinar has no prerequisites.
training@intersect.org.au
Intersect Australia
REDCap, Qualtrics