Register training material
12 materials found

Keywords: R software  or Galaxy Australia 


Tutorials to learn how to use STAN

Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.

Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB

Tutorials to learn how to use STAN https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics. https://mc-stan.org/about/team/ Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Species Distribution Modelling in R

This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.

Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting...

Keywords: Species Distribution Modelling, Ecology, R software, EcoCommons

Species Distribution Modelling in R https://dresa.org.au/materials/species-distribution-modelling-in-r This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools. Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting your model, 5. model evaluation Scripts and files are available here: https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts Scripts for all four modules are here: https://www.ecocommons.org.au/wp-content/uploads/EcoCommons_steps_1_to_4.html https://www.ecocommons.org.au/contact/ Species Distribution Modelling, Ecology, R software, EcoCommons ugrad mbr phd
WEBINAR: Where to go when your bioinformatics outgrows your compute

This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.

Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...

Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing

WEBINAR: Where to go when your bioinformatics outgrows your compute https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554 This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021. Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey.  We also describe bioinformatics and computing support services available to Australian researchers.  This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar. Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/hNTbngSc-W0 Melissa Burke (melissa@biocommons.org.au) Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WORKSHOP: Online data analysis for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘Online data analysis for biologists’. This workshop took place on 9 September 2021.

Workshop description

Galaxy is an online platform for biological research that allows people to use computational data...

Keywords: Bioinformatics, Analysis, Workflows, Galaxy Australia

WORKSHOP: Online data analysis for biologists https://dresa.org.au/materials/workshop-online-data-analysis-for-biologists-08d66913-4ce3-4528-bdd6-0b0fcf234982 This record includes training materials associated with the Australian BioCommons workshop ‘Online data analysis for biologists’. This workshop took place on 9 September 2021. Workshop description Galaxy is an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. It is an open source, web-based platform for accessible, reproducible, and transparent computational biomedical research. It also captures run information so that workflows can be saved, repeated and shared efficiently via the web. This interactive beginners workshop will provide an introduction to the Galaxy interface, histories and available tools. The material covered in this workshop is freely available through the Galaxy Training Network. The workshop will be held via Zoom and involves a combination of presentations by the lead trainer and smaller breakout groups supported by experienced facilitators. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): schedule for the workshop Online_data_analysis_for_biologists_extraslides (PPTX and PDF): Slides used to introduce the data set and emphasise the importance of workflows. These slides were developed by Ms Grace Hall. Materials shared elsewhere: The tutorial used in this workshop is available via the Galaxy Training Network. Anne Fouilloux, Nadia Goué, Christopher Barnett, Michele Maroni, Olha Nahorna, Dave Clements, Saskia Hiltemann, 2021 Galaxy 101 for everyone (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/introduction/tutorials/galaxy-intro-101-everyone/tutorial.html Online; accessed Fri Dec 10 2021 Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Workflows, Galaxy Australia
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia

This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.

Event description 

Have you discovered a brilliant...

Keywords: Bioinformatics, Workflows, FAIR, Galaxy Australia

WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia https://dresa.org.au/materials/webinar-here-s-one-we-prepared-earlier-re-creating-bioinformatics-methods-and-workflows-with-galaxy-australia-134a8bf5-3801-421f-a454-e0f9020f4871 This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022. Event description  Have you discovered a brilliant bioinformatics workflow but you’re not quite sure how to use it? In this webinar we will introduce the power of Galaxy for construction and (re)use of reproducible workflows, whether building workflows from scratch, recreating them from published descriptions and/or extracting from Galaxy histories. Using an established bioinformatics method, we’ll show you how to: Use the workflows creator in Galaxy Australia  Build a workflow based on a published method Annotate workflows so that you (and others) can understand them  Make workflows finable and citable (important and very easy to do!) Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. GalaxyWorkflows_Slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/IMkl6p7hkho Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, FAIR, Galaxy Australia
WORKSHOP: Single cell RNAseq analysis in R

This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.

Event description

Analysis and interpretation of single cell RNAseq (scRNAseq) data...

Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq

WORKSHOP: Single cell RNAseq analysis in R https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945 This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022. Event description Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.  We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. scRNAseq_Slides (PDF): Slides used to introduce topics scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.   Materials shared elsewhere: This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’ https://swbioinf.github.io/scRNAseqInR_Doco/index.html This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here. Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WEBINAR: Conservation genomics in the age of extinction

This record includes training materials associated with the Australian BioCommons webinar ‘Conservation genomics in the age of extinction’. This webinar took place on 8 March 2022.

Event description 

Biodiversity is crashing and millions of plant and animal species are at the edge of...

Keywords: Conservation genomics, Genomics, Bioinformatics, Sequencing, Threatened Species Initiative, Galaxy Australia

WEBINAR: Conservation genomics in the age of extinction https://dresa.org.au/materials/webinar-conservation-genomics-in-the-age-of-extinction-c7718a53-68ee-4c69-adf4-cd0550710d3f This record includes training materials associated with the Australian BioCommons webinar ‘Conservation genomics in the age of extinction’. This webinar took place on 8 March 2022. Event description  Biodiversity is crashing and millions of plant and animal species are at the edge of extinction. Understanding the genetic diversity of these species is an important tool for conservation biology but obtaining high quality genomes for threatened species is not always straightforward. In this webinar Dr Carolyn Hogg speaks about the work she has been doing with the Threatened Species Initiative to build genomic resources to understand and protect Australia’s threatened species. Using examples such as the Kroombit Tinker Frog and the Greater Bilby, Carolyn describes some of the complexities and challenges of generating genomes from short reads and HiFi reads for critically endangered species. She outlines the technologies and resources being used and how these are bridging the gap between genomicists, bioinformaticians and conservation experts to help save Australian species. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/Bl7CaiGQ91s   Melissa Burke (melissa@biocommons.org.au) Conservation genomics, Genomics, Bioinformatics, Sequencing, Threatened Species Initiative, Galaxy Australia
WORKSHOP: Hybrid de novo genome assembly

This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.

Workshop description

It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches...

Keywords: Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly

WORKSHOP: Hybrid de novo genome assembly https://dresa.org.au/materials/workshop-hybrid-de-novo-genome-assembly-714004ba-0348-47c8-a68f-038a1f8ccfb1 This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021. Workshop description It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches which enable research on organisms for which reference genomes were not previously available. These approaches combine the strengths of short (Illumina) and long (PacBio or Nanopore) read technologies, resulting in improved assembly quality. In this workshop we will learn how to create and assess genome assemblies from Illumina and Nanopore reads using data from a Bacillus Subtilis strain. We will demonstrate two hybrid-assembly methods using the tools Flye, Pilon, and Unicycler to perform assembly and subsequent error correction. You will learn how to visualise input read sets and the assemblies produced at each stage and assess the quality of the final assembly. All analyses will be performed using Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. This workshop is presented by the Australian BioCommons and Melbourne Bioinformatics with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop   Materials shared elsewhere: This workshop follows the tutorial ‘Hybrid genome assembly - Nanopore and Illumina’ developed by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/hybrid_assembly/nanopore_assembly/ Melissa Burke (melissa@biocommons.org.au) Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly
WORKSHOP: Working with genomics sequences and features in R with Bioconductor

This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.

Workshop description

Explore the many useful functions that the Bioconductor...

Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis

WORKSHOP: Working with genomics sequences and features in R with Bioconductor https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021. Workshop description Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.  DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations. This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.  This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings   Materials shared elsewhere: This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison. https://monashdatafluency.github.io/r-bioc-2/ Melissa Burke (melissa@biocommons.org.au) R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
VOSON Lab Code Blog

The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.

Keywords: visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics

Resource type: tutorial, other

VOSON Lab Code Blog https://dresa.org.au/materials/voson-lab-code-blog The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages. robert.ackland@anu.edu.au visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics researcher support phd masters
Galaxy Training

Galaxy is a hosted web-accessible platform that lets you conduct accessible, reproducible, and transparent computational biological research. It is an international, community driven effort to make it easy for life scientists to analyse their data for free and without the need for programmatic...

Keywords: Galaxy Australia, Galaxy Project, Bioinformatics, Data analysis

Galaxy Training https://dresa.org.au/materials/galaxy-training Galaxy is a hosted web-accessible platform that lets you conduct accessible, reproducible, and transparent computational biological research. It is an international, community driven effort to make it easy for life scientists to analyse their data for free and without the need for programmatic skills. This is a collection of tutorials developed and maintained by the worldwide Galaxy community that show you how to analyse a variety of biological data using Galaxy. Melissa (melissa@biocommons.org.au) Galaxy Australia, Galaxy Project, Bioinformatics, Data analysis