Register training material
9 materials found

Keywords: R software  or Excel 


Tutorials to learn how to use STAN

Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.

Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB

Tutorials to learn how to use STAN https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics. https://mc-stan.org/about/team/ Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Species Distribution Modelling in R

This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.

Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting...

Keywords: Species Distribution Modelling, Ecology, R software, EcoCommons

Species Distribution Modelling in R https://dresa.org.au/materials/species-distribution-modelling-in-r This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools. Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting your model, 5. model evaluation Scripts and files are available here: https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts Scripts for all four modules are here: https://www.ecocommons.org.au/wp-content/uploads/EcoCommons_steps_1_to_4.html https://www.ecocommons.org.au/contact/ Species Distribution Modelling, Ecology, R software, EcoCommons ugrad mbr phd
WORKSHOP: Single cell RNAseq analysis in R

This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.

Event description

Analysis and interpretation of single cell RNAseq (scRNAseq) data...

Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq

WORKSHOP: Single cell RNAseq analysis in R https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945 This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022. Event description Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.  We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. scRNAseq_Slides (PDF): Slides used to introduce topics scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.   Materials shared elsewhere: This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’ https://swbioinf.github.io/scRNAseqInR_Doco/index.html This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here. Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Working with genomics sequences and features in R with Bioconductor

This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.

Workshop description

Explore the many useful functions that the Bioconductor...

Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis

WORKSHOP: Working with genomics sequences and features in R with Bioconductor https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021. Workshop description Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.  DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations. This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.  This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings   Materials shared elsewhere: This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison. https://monashdatafluency.github.io/r-bioc-2/ Melissa Burke (melissa@biocommons.org.au) R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
VOSON Lab Code Blog

The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.

Keywords: visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics

Resource type: tutorial, other

VOSON Lab Code Blog https://dresa.org.au/materials/voson-lab-code-blog The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages. robert.ackland@anu.edu.au visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics researcher support phd masters
Beyond Basics: Conditionals and Visualisation in Excel

After cleaning your dataset, you may need to apply some conditional analysis to glean greater insights from your data. You may also want to enhance your charts for inclusion into a manuscript, thesis or report by adding some statistical elements. This course will cover conditional syntax, nested...

Keywords: Excel

Beyond Basics: Conditionals and Visualisation in Excel https://dresa.org.au/materials/beyond-basics-conditionals-and-visualisation-in-excel After cleaning your dataset, you may need to apply some conditional analysis to glean greater insights from your data. You may also want to enhance your charts for inclusion into a manuscript, thesis or report by adding some statistical elements. This course will cover conditional syntax, nested functions, statistical charting and outlier identification. Armed with the tips and tricks from our introductory Excel for Researchers course, you will be able to tap into even more of Excel’s diverse functionality and apply it to your research project. - Cell syntax and conditional formatting - IF functions - Pivot Table summaries - Nesting multiple AND/IF/OR calculations - Combining nested calculations with conditional formatting to bring out important elements of the dataset - MINIFS function - Box plot creation and outlier identification - Trendline and error bar chart enhancements Familiarity with the content of Excel for Researchers, specifically:  - the general Office/Excel interface (menus, ribbons/toolbars, etc.) - workbooks and worksheets - absolute and relative references, e.g. $A$1, A1. - simple ranges, e.g. A1:B5 training@intersect.org.au Excel
Excel for Researchers

Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. We’ll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise,...

Keywords: Excel

Excel for Researchers https://dresa.org.au/materials/excel-for-researchers Data rarely comes in the form you require. Often it is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. We’ll use one of the most widespread data wrangling tools, Microsoft Excel, to import, sort, filter, copy, protect, transform, summarise, merge, and visualise research data. While aimed at novice Excel users, most attendees will walk away with new tricks to work more efficiently with their research data. ‘Clean up’ messy research data Organise, format and name your data Interpret your data (SORTING, FILTERING, CONDITIONAL FORMATTING) Perform calculations on your data using functions (MAX, MIN, AVERAGE) Extract significant findings from your data (PIVOT TABLE, VLOOKUP) Manipulate your data (convert data format, work with DATES and TIMES) Create graphs and charts to visualise your data (CHARTS) Handy tips to speed up your work In order to participate, attendees must have a licensed copy of Microsoft Excel installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software.   training@intersect.org.au Excel
Getting Started with Excel

We rarely receive the research data in an appropriate form. Often data is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. 

This webinar targets beginners and presents a quick demonstration of using the most widespread data wrangling tool,...

Keywords: Excel

Getting Started with Excel https://dresa.org.au/materials/getting-started-with-excel We rarely receive the research data in an appropriate form. Often data is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors.  This webinar targets beginners and presents a quick demonstration of using the most widespread data wrangling tool, Microsoft Excel, to sort, filter, copy, protect, transform, aggregate, summarise, and visualise research data. Introduction to Microsoft Excel user interface Interpret data using sorting, filtering, and conditional formatting Summarise data using functions Analyse data using pivot tables Manipulate and visualise data Handy tips to speed up your work The webinar has no prerequisites. training@intersect.org.au Excel