Register training material
11 materials found

Keywords: FAIR  or AMD 


WORKSHOP: Make your bioinformatics workflows findable and citable

This record includes training materials associated with the Australian BioCommons workshop ‘Make your bioinformatics workflows findable and citable’. This workshop took place on 21 March 2023.

Event description

Computational workflows are invaluable resources for research communities. They help...

Keywords: Bioinformatics, Workflows, WorkflowHub, FAIR, Open Science

WORKSHOP: Make your bioinformatics workflows findable and citable https://dresa.org.au/materials/workshop-make-your-bioinformatics-workflows-findable-and-citable-74e85d1c-d869-429e-b942-8391f4bab23d This record includes training materials associated with the Australian BioCommons workshop ‘Make your bioinformatics workflows findable and citable’. This workshop took place on 21 March 2023. Event description Computational workflows are invaluable resources for research communities. They help us  standardise common analyses, collaborate with other researchers, and support reproducibility. Bioinformatics workflow developers invest significant time and expertise to create, share, and maintain these resources for the benefit of the wider community and being able to easily find and access workflows is an essential factor in their uptake by the community. Increasingly, the research community is turning to workflow registries to find and access public workflows that can be applied to their research. Workflow registries support workflow findability and citation by providing a central repository and allowing users to search for and discover them easily. This workshop will introduce you to workflow registries and support attendees to register their workflows on the popular workflow registry, WorkflowHub. We’ll kick off the workshop with an introduction to the concepts underlying workflow findability, how it can benefit workflow developers, and how you can make the most of workflow registries to share your computational workflows with the research community. You will then have the opportunity to register your own workflows in WorkflowHub with support from our trainers.  Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. 2023-03-21_Workflows_slides (PDF): A copy of the slides presented during the workshop Materials shared elsewhere: A recording of the first part of this workshop is available on the Australian BioCommons YouTube Channel: https://youtu.be/2kGKxaPuQN8 Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, WorkflowHub, FAIR, Open Science
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia

This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.

Event description 

Have you discovered a brilliant...

Keywords: Bioinformatics, Workflows, FAIR, Galaxy Australia

WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia https://dresa.org.au/materials/webinar-here-s-one-we-prepared-earlier-re-creating-bioinformatics-methods-and-workflows-with-galaxy-australia-134a8bf5-3801-421f-a454-e0f9020f4871 This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022. Event description  Have you discovered a brilliant bioinformatics workflow but you’re not quite sure how to use it? In this webinar we will introduce the power of Galaxy for construction and (re)use of reproducible workflows, whether building workflows from scratch, recreating them from published descriptions and/or extracting from Galaxy histories. Using an established bioinformatics method, we’ll show you how to: Use the workflows creator in Galaxy Australia  Build a workflow based on a published method Annotate workflows so that you (and others) can understand them  Make workflows finable and citable (important and very easy to do!) Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. GalaxyWorkflows_Slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/IMkl6p7hkho Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, FAIR, Galaxy Australia
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software

This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.

Event description 

bio.tools provides easy access to essential scientific...

Keywords: Bioinformatics, Research software, EDAM, Workflows, FAIR

WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software https://dresa.org.au/materials/webinar-bio-tools-making-it-easier-to-find-understand-and-cite-biological-tools-and-software-aea38c9e-0b40-4308-bafd-f7580563f520 This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022. Event description  bio.tools provides easy access to essential scientific and technical information about software, command-line tools, databases and services. It’s backed by ELIXIR, the European Infrastructure for Biological Information, and is being used in Australia to register software (e.g. Galaxy Australia, prokka). It underpins the information provided in the Australian BioCommons discovery service ToolFinder. Hans Ienasescu and Matúš Kalaš join us to explain how bio.tools uses a community driven, open science model to create this collection of resources and how it makes it easier to find, understand, utilise and cite them. They’ll delve into how bio.tools is using standard semantics (e.g. the EDAM ontology) and syntax (e.g. biotoolsSchema) to enrich the annotation and description of tools and resources. Finally, we’ll see how the community can contribute to bio.tools and take advantage of its key features to share and promote their own research software.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. biotools_EDAM_slides (PDF): A PDF copy of the slides presented during the webinar.   Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/K0J4_bAUG3Y Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Research software, EDAM, Workflows, FAIR
Research Data Governance

This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders.

If you want to share...

Keywords: data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material

Research Data Governance https://dresa.org.au/materials/research-data-governance-6ad9ab90-1a29-41db-b4aa-f1988501530d This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders. If you want to share the video please use this: Australian Research Data Commons, 2021. Research Data Governance. [video] Available at: https://youtu.be/K_xVQRdgCIc  DOI: http://doi.org/10.5281/zenodo.5044585 [Accessed dd Month YYYY]. contact@ardc.edu.au Martinez, Paula Andrea (type: ProjectLeader) Wilkinson, Max (type: Editor) Callaghan,Shannon (type: Editor) Savill, Jo (type: Editor) Kang, Kristan (type: Editor) Levett, Kerry (type: Editor) Russell, Keith (type: Editor) Simons, Natasha (type: Editor) data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material
ARDC Skills Landscape

The Australian Research Data Commons is driving transformational change in the research data ecosystem, enabling researchers to conduct world class data-intensive research. One interconnected component of this ecosystem is skills development/uplift, which is critical to the Commons and its...

Keywords: skills, data skills, eresearch skills, community, skilled workforce, FAIR, research data management, data stewardship, data governance, data use, data generation, training material

ARDC Skills Landscape https://dresa.org.au/materials/ardc-skills-landscape-56b224ca-9e30-4771-8615-d028c7be86a6 The Australian Research Data Commons is driving transformational change in the research data ecosystem, enabling researchers to conduct world class data-intensive research. One interconnected component of this ecosystem is skills development/uplift, which is critical to the Commons and its purpose of providing Australian researchers with a competitive advantage through data.   In this presentation, Kathryn Unsworth introduces the ARDC Skills Landscape. The Landscape is a first step in developing a national skills framework to enable a coordinated and cohesive approach to skills development across the Australian eResearch sector. It is also a first step towards helping to analyse current approaches in data training to identify: - Siloed skills initiatives, and finding ways to build partnerships and improve collaboration - Skills deficits, and working to address the gaps in data skills - Areas of skills development for investment by skills stakeholders like universities, research organisations, skills and training service providers, ARDC, etc.   contact@ardc.edu.au skills, data skills, eresearch skills, community, skilled workforce, FAIR, research data management, data stewardship, data governance, data use, data generation, training material
ARDC Your first step to FAIR

This workshop gives a brief overview of the FAIR principles, including a method to make a one-file dataset FAIR.

Keywords: training material, FAIR, data, workshop

ARDC Your first step to FAIR https://dresa.org.au/materials/ardc-your-first-step-to-fair-1ee3dc3c-23b0-4287-b96c-c120c5697932 This workshop gives a brief overview of the FAIR principles, including a method to make a one-file dataset FAIR. contact@ardc.edu.au Stokes, Liz (type: Editor) Martinez, Paula Andrea (type: Editor) Russell, Keith (type: Editor) training material, FAIR, data, workshop
ARDC Training Materials Metadata Checklist v1.1

The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials

Keywords: checklist, Training material, FAIR, standard, requirements, metadata

ARDC Training Materials Metadata Checklist v1.1 https://dresa.org.au/materials/ardc-training-materials-metadata-checklist-v1-1 The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials contact@ardc.edu.au checklist, Training material, FAIR, standard, requirements, metadata
Locking the front door without leaving the windows open: positioning authentication technologies within the "Five Safes" framework for effective use of sensitive research data

This project explores the options for access to sensitive data sets; what authentication technologies (e.g. multi-factor authentication) are needed to access sensitive data and secure compute environments.  This project seeks to position choices around authentication technologies within the Five...

Keywords: ARDC, Storage and Compute Summit, FAIR, Infrastructure, NCRIS, eResearch, training material

Locking the front door without leaving the windows open: positioning authentication technologies within the "Five Safes" framework for effective use of sensitive research data https://dresa.org.au/materials/locking-the-front-door-without-leaving-the-windows-open-positioning-authentication-technologies-within-the-five-safes-framework-for-effective-use-of-sensitive-research-data-b83124f8-2add-41c6-b194-d5dd50d098f6 This project explores the options for access to sensitive data sets; what authentication technologies (e.g. multi-factor authentication) are needed to access sensitive data and secure compute environments.  This project seeks to position choices around authentication technologies within the Five Safes framework for research use of sensitive data, proposed in 2003 by Felix Ritchie of the UK Office of National Statistics: • Safe Projects: is the proposed research use of the data appropriate?  • Safe People: can the users be trusted to use the data in an appropriate manner?  • Safe Settings: does the access facility limit unauthorised use? • Safe Data: is there a disclosure risk in the data itself? • Safe Outputs: are the research results non-disclosive i.e. they do not compromise privacy or breach confidentiality? contact@ardc.edu.au ARDC, Storage and Compute Summit, FAIR, Infrastructure, NCRIS, eResearch, training material
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

The course structure was based on 'FAIR Data in the...

Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided-2d794a84-f0ff-4e11-a39c-fa8ea481e097 FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub. contact@ardc.edu.au training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
AMD Profiling

The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs.

You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite.

You will also learn how to use the new...

Keywords: supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm

Resource type: activity

AMD Profiling https://dresa.org.au/materials/amd-profiling The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs. You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite. You will also learn how to use the new Omnitools - Omnitrace and Omniperf - that were introduced at the end of 2022. Omnitrace is a powerful tracing profiler for both CPU and GPU. It can collect data from a much wider range of sources and includes hardware counters and sampling approaches. Omniperf is a performance analysis tool that can help you pinpoint how your application is performing with a visual view of the memory hierarchy on the GPU as well as reporting the percentage of peak for many different measurements. training@pawsey.org.au supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm
Porting the multi-GPU SELF-Fluids code to HIPFort

In this presentation by Dr. Joseph Schoonover of Fluid Numerics LLC, Joe shares their experience with the porting process for SELF-Fluids from multi-GPU CUDA-Fortran to multi-GPU HIPFort.

The presentation covers the design principles and roadmap for SELF and the strategy to port from...

Keywords: AMD, GPUs, supercomputer, supercomputing

Resource type: presentation

Porting the multi-GPU SELF-Fluids code to HIPFort https://dresa.org.au/materials/porting-the-multi-gpu-self-fluids-code-to-hipfort In this presentation by Dr. Joseph Schoonover of Fluid Numerics LLC, Joe shares their experience with the porting process for SELF-Fluids from multi-GPU CUDA-Fortran to multi-GPU HIPFort. The presentation covers the design principles and roadmap for SELF and the strategy to port from Nvidia-only platforms to AMD & Nvidia GPUs. Also discussed are the hurdles encountered along the way and considerations for developing multi-GPU accelerated applications in Fortran. SELF is an object-oriented Fortran library that supports the implementation of Spectral Element Methods for solving partial differential equations. SELF-Fluids is an implementation of SELF that solves the compressible Navier Stokes equations on CPU only and GPU accelerated compute platforms using the Discontinuous Galerkin Spectral Element Method. The SELF API is designed based on the assumption that SEM developers and researchers need to be able to implement derivatives in 1-D and divergence, gradient, and curl in 2-D and 3-D on scalar, vector, and tensor functions using spectral collocation, continuous Galerkin, and discontinuous Galerkin spectral element methods. The presentation discussion is placed in context of the Exascale era, where we're faced with a zoo of available compute hardware. Because of this, SELF routines provide support for GPU acceleration through AMD’s HIP and support for multi-core, multi-node, and multi-GPU platforms with MPI. training@pawsey.org.au AMD, GPUs, supercomputer, supercomputing