Register training material
6 materials found

Keywords: Data visualisation  or Julia 


WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022. **Event description** Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: - Spreadsheets, organising data and first steps with R - Manipulating and analysing data with dplyr - Data visualisation - Summarized experiments and getting started with Bioconductor This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop - Recommended resources (PDF): A list of resources recommended by trainers and participants - Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. **Materials shared elsewhere:** This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
Learn to Program: Julia

Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance...

Keywords: Programming, Julia

Learn to Program: Julia https://dresa.org.au/materials/learn-to-program-julia Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance of the fastest programming languages! This workshop expects that you are coming to Julia with some experience in the basic concepts of programming in another language. It is designed to help you migrate the basic concepts of programming that you already know to the Julia context. Join us for this live coding workshop where we write programs that produce results, using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Julia - How to load external data into Julia - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data using the Plots library in Julia #### Prerequisites: Some experience with the basic concepts of programming in another language needed to attend this course. It is an intensive course that is designed to help you migrate the basic concepts of programming that you already know to the Julia context in half a day instead of a full day. If you don't have any prior experience in programming, please consider attending one of the [Learn to Program: Python](https://intersect.org.au/training/course/python101/), [Learn to Program: R](https://intersect.org.au/training/course/r101/) or [Learn to Program: MATLAB](https://intersect.org.au/training/course/matlab101/) prior to this course. We also strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/julia101).** training@intersect.org.au Programming, Julia
Beyond the Basics: Julia

Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance...

Keywords: Programming, Julia

Beyond the Basics: Julia https://dresa.org.au/materials/beyond-the-basics-julia Julia is a high-level, high-performance dynamic programming language with more than 4,000 external libraries available. Julia allows you to range from tight low-level loops and conditionals, up to a high-level programming style, with its performance approaching and often matching the performance of the fastest programming languages! This workshop explores the more advanced features of functions in Julia, introduces widely used tools within Julia, as well as demonstrates the speed of Julia by benchmarking functions and different styles of scripting within Julia. Join us for this live coding workshop where we write programs that produce results, using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. #### You'll learn: - Understand the role of Types within Julia - Create functions with complex arguments - Demonstrate programming patterns of list comprehension, pipes, and anonymous functions. - Benchmark Julia code and understand how to make it fast #### Prerequisites: If you already have experience with programming, please check the topics covered in the [Learn to Program: Julia](https://intersect.org.au/training/course/julia101/) to ensure that you are familiar with the knowledge needed for this course. **For more information, please click [here](https://intersect.org.au/training/course/julia201).** training@intersect.org.au Programming, Julia
Start Coding without Hesitation: Programming Languages Showdown

Programming is becoming more and more popular, with many researchers using programming to perform data cleaning, data manipulation, data analytics, as well as creating publication quality plots. Programming can be really beneficial for automating processes and workflows. In this webinar, we are...

Keywords: Programming, Python, R, MATLAB, Julia

Start Coding without Hesitation: Programming Languages Showdown https://dresa.org.au/materials/start-coding-without-hesitation-programming-languages-showdown Programming is becoming more and more popular, with many researchers using programming to perform data cleaning, data manipulation, data analytics, as well as creating publication quality plots. Programming can be really beneficial for automating processes and workflows. In this webinar, we are exploring four of the most popular programming languages that are widely used in academia, namely Python, R, MATLAB, and Julia. #### You'll learn: - Why use Programming - An overview of Python, R, MATLAB, and Julia - Code comparison of the four programming languages - Popularity and job opportunities - Intersect's comparison - General guidelines on how to choose the best programming language for your research #### Prerequisites: The webinar has no prerequisites. **For more information, please click [here](https://intersect.org.au/training/course/coding001).** training@intersect.org.au Programming, Python, R, MATLAB, Julia
Heurist Tutorials

A set of video tutorials with accompanying walkthroughs for building your first Heurist database and website. The first three tutorials show you how to get started in Heurist. The five subsequent tutorials introduce you to the five main menus in the Heurist interface.

Keywords: Heurist, Data management, Data visualisation, Digital Humanities, Databasing, website

Resource type: tutorial

Heurist Tutorials https://dresa.org.au/materials/heurist-tutorials A set of video tutorials with accompanying walkthroughs for building your first Heurist database and website. The first three tutorials show you how to get started in Heurist. The five subsequent tutorials introduce you to the five main menus in the Heurist interface. michael.falk@sydney.edu.au Johnson, Ian Osmakov, Artem Heurist, Data management, Data visualisation, Digital Humanities, Databasing, website mbr phd ecr researcher support