Register training material
9 materials found

Licence: CC-BY-4.0 

and

Keywords: AI  or software publishing  or fish 


CheckEM User Guide

CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for...

Keywords: stereo-video, fish, annotation

CheckEM User Guide https://dresa.org.au/materials/checkem-user-guide CheckEM is an open-source web based application which provides quality control assessments on metadata and image annotations of fish stereo-imagery. It is available at marine-ecology.shinyapps.io/CheckEM. The application can assess a range of sampling methods and annotation data formats for common inaccuracies made whilst annotating stereo imagery. CheckEM creates interactive plots and tables in a graphical interface, and provides summarised data and a report of potential errors to download. brooke.gibbons@uwa.edu.au stereo-video, fish, annotation
EventMeasure Annotation Guide

EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length

Keywords: fish, stereo-video, annotation

EventMeasure Annotation Guide https://dresa.org.au/materials/eventmeasure-annotation-guide EventMeasure annotation guide for baited remote underwater stereo video systems (stereo-BRUVs) for count and length tim.langlois@uwa.edu.au fish, stereo-video, annotation
Stereo-video workflows for fish and benthic ecologists

Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range...

Keywords: stereo-video, fish, sharks, habitats

Resource type: tutorial

Stereo-video workflows for fish and benthic ecologists https://dresa.org.au/materials/stereo-video-workflows-for-fish-and-benthic-ecologists Stereo imagery is widely used by research institutions and management bodies around the world as a cost-effective and non-destructive method to research and monitor fish and habitats (Whitmarsh, Fairweather and Huveneers, 2017). Stereo-video can provide accurate and precise size and range measurements and can be used to study spatial and temporal patterns in fish assemblages (McLean et al., 2016), habitat composition and complexity (Collins et al., 2017), behaviour (Goetze et al., 2017), responses to anthropogenic pressures (Bosch et al., 2022) and the recovery and growth of benthic fauna (Langlois et al. 2020). It is important that users of stereo-video collect, annotate, quality control and store their data in a consistent manner, to ensure data produced is of the highest quality possible and to enable large scale collaborations. Here we collate existing best practices and propose new tools to equip ecologists to ensure that all aspects of the stereo-video workflow are performed in a consistent way. tim.langlois@uwa.edu.au stereo-video, fish, sharks, habitats
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material
Training resources for sharing and reuse

This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis...

Keywords: FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance

Training resources for sharing and reuse https://dresa.org.au/materials/training-resources-for-sharing-and-reuse This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis on sharing and reuse. This was a very collaborative project with the opportunity to work with different target audiences, topics and support expertise. To accommodate for a short timeline. We defined the scope to six topics. 1) Containers in Research 2) Data Governance 3) Software citation and Licensing 4) FAIR Data 101 5) Metadata for Training Materials 6) Machine Learning Resources. You can watch the video on YouTube here: https://youtu.be/10Yv_BFa-mw contact@ardc.edu.au FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance
Software publishing, licensing, and citation

A short presentation for reuse includes speaker notes.

Making software citable using a code repository, an ORCID and a licence.

Cite as
Liffers, Matthias. (2021, July 12). Software publishing, licensing, and citation. Zenodo. https://doi.org/10.5281/zenodo.5091717

Keywords: software citation, software publishing, software registry, software repository, research software

Resource type: presentation

Software publishing, licensing, and citation https://dresa.org.au/materials/software-publishing-licensing-and-citation A short presentation for reuse includes speaker notes. Making software citable using a code repository, an ORCID and a licence. **Cite as** Liffers, Matthias. (2021, July 12). Software publishing, licensing, and citation. Zenodo. https://doi.org/10.5281/zenodo.5091717 ARDC Contact us: https://ardc.edu.au/contact-us/ software citation, software publishing, software registry, software repository, research software phd ecr researcher support
ARDC Guide to making Software Citable

A short guide to making software citable using a code repository, an ORCID and a licence.

Cite as
Liffers, Matthias, & Honeyman, Tom. (2021). ARDC Guide to making software citable. Zenodo. https://doi.org/10.5281/zenodo.5003989

Keywords: software citation, software publishing, software registry, software repository, research software

Resource type: guide

ARDC Guide to making Software Citable https://dresa.org.au/materials/ardc-guide-to-making-software-citable A short guide to making software citable using a code repository, an ORCID and a licence. **Cite as** Liffers, Matthias, & Honeyman, Tom. (2021). ARDC Guide to making software citable. Zenodo. https://doi.org/10.5281/zenodo.5003989 ARDC Contact us: https://ardc.edu.au/contact-us/ software citation, software publishing, software registry, software repository, research software phd ecr researcher support