WEBINAR: AlphaFold: what's in it for me?
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the...
Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: AlphaFold: what's in it for me?
https://zenodo.org/record/7865494
https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.
Beyond the hype, what does this mean for structural biology as a field (and as a career)?
Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases.
Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/4ytn2_AiH8s
Melissa Burke (melissa@biocommons.org.au)
Morton, Craig (orcid: 0000-0001-5452-5193)
Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: Variant interpretation: from the clinic to the lab… and back again
This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022.
Event description
The use of genomic testing is increasing...
Keywords: Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling
WEBINAR: Variant interpretation: from the clinic to the lab… and back again
https://zenodo.org/record/7425920
https://dresa.org.au/materials/webinar-variant-interpretation-from-the-clinic-to-the-lab-and-back-again
This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022.
**Event description**
The use of genomic testing is increasing rapidly as the cost of genome sequencing decreases. Many areas of the health workforce are upskilling in genomics to help meet the increased demand. From clinicians learning how to use the right test, for the right patient, at the right time, to medical scientists learning how to interpret and classify variants, and data scientists to learning how to better create and continuously refine the pipelines and software to handle and curate big data.
In this webinar, we’ll hear from two people working at the coalface of variant interpretation – one in a diagnostic laboratory and the other in a cancer research laboratory.
Naomi Baker is Medical Scientist at Victorian Clinical Genetics Services. She helps process hundreds of genomic tests per year to find the variants that cause rare diseases. She’ll explain the clinical variant interpretation processes she uses, the pipelines, professions and people involved.
Joep Vissers is a Curation Team Leader, at the University of Melbourne Centre for Cancer Research, Department of Clinical Pathology. Joep, who also teaches cancer biology at the University, will describe how he uses variant interpretation in his work at the research/clinical interface, and the shift in mindset required when working with data for these different purposes.
Amy Nisselle, Genomics Workforce Lead at Melbourne Genomics, will then briefly outline some of the education programs available in clinical variant interpretation.
This webinar is co-presented by Australian BioCommons and Melbourne Genomics
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
* Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
* Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
* Variant interpretation from the clinic to the lab and back again.pdf: A PDF copy of the slides presented during the webinar.
**Materials shared elsewhere:**
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/wLMhwIiK8Lw
Melissa Burke (melissa@biocommons.org.au)
Baker, Naomi
Vissers, Joep (orcid: 0000-0003-0435-6824)
Nisselle, Amy (orcid: 0000-0002-8908-5906)
Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling
WEBINAR: Getting started with whole genome mapping and variant calling on the command line
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022.
Event description
Life scientists are increasingly using whole...
Keywords: Genome mapping, Variant calling, Bioinformatics, Workflows
WEBINAR: Getting started with whole genome mapping and variant calling on the command line
https://zenodo.org/record/7024058
https://dresa.org.au/materials/webinar-getting-started-with-whole-genome-mapping-and-variant-calling-on-the-command-line
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022.
**Event description**
Life scientists are increasingly using whole genome sequencing (WGS) to ask and answer research questions across the tree of life. Before any of this work can be done, there is the essential but challenging task of processing raw sequencing data. Processing WGS data is a computationally challenging, multi-step process used to create a map of an individual’s genome and identify genetic variant sites. The tools you use in this process and overall workflow design can look very different for different researchers, it all depends on your dataset and the research questions you’re asking. Luckily, there are lots of existing WGS processing tools and pipelines out there, but knowing where to start and what your specific needs are is hard work, no matter how experienced you are.
In this webinar we will walk through the essential steps and considerations for researchers who are running and building reproducible WGS mapping and variant calling pipelines at the command line interface. We will discuss how to choose and evaluate a pipeline that is right for your dataset and research questions, and how to get access to the compute resources you need
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
* Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
* Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
* WGS mapping and variant calling _slides (PDF): A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/Q2EceFyizio
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Genome mapping, Variant calling, Bioinformatics, Workflows
WORKSHOP: Variant calling in humans, animals and plants with Galaxy
This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.
Variant calling in polyploid organisms, including humans, plants and animals, can help determine...
Keywords: Variant calling, Genetic Variation Analysis, SNP annotation
WORKSHOP: Variant calling in humans, animals and plants with Galaxy
https://zenodo.org/record/5076668
https://dresa.org.au/materials/workshop-variant-calling-in-humans-animals-and-plants-with-galaxy
This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.
Variant calling in polyploid organisms, including humans, plants and animals, can help determine single or multi-variant contributors to a phenotype. Further, sexual reproduction (as compared to asexual) combines variants in a novel manner; this can be used to determine previously unknown variant - phenotype combinations but also to track lineage and lineage associated traits (GWAS studies), that all rely on highly accurate variant calling. The ability to confidently call variants in polyploid organisms is highly dependent on the balance between the frequency of variant observations against the background of non-variant observations, and even further compounded when one considers multi-variant positions within the genome. These are some of the challenges that will be explored in the workshop.
In this online workshop we focused on the tools and workflows available for variant calling in polyploid organisms in Galaxy Australia. The workshop provided opportunities for hands-on experience using Freebayes for variant calling and SnpEff and GEMINI for variant annotation. The workshop made use of data from a case study on diagnosing a genetic disease however the tools and workflows are equally applicable to other polyploid organisms and biological questions.
Access to all of the tools covered in this workshop was via Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Schedule (PDF): schedule for the workshop
- Variant calling - humans, animals, plants - slides (PPTX and PDF): slides used in the workshop
**Materials shared elsewhere:**
The tutorial used in this workshop is available via the Galaxy Training Network.
Wolfgang Maier, Bérénice Batut, Torsten Houwaart, Anika Erxleben, Björn Grüning, 2021 Exome sequencing data analysis for diagnosing a genetic disease (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html Online; accessed 25 May 2021
Melissa Burke (melissa@biocommons.org.au)
Price, Gareth (orcid: 0000-0003-2439-8650)
Variant calling, Genetic Variation Analysis, SNP annotation
Accelerating skills development in Data science and AI at scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...
Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Accelerating skills development in Data science and AI at scale
https://zenodo.org/record/4287746
https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally.
The talk will also cover our approach as outlined below
• Combined survey of gaps in skills and trainings for Data science and AI
• Provide seats to partners
• Share associate instructors/helpers/volunteers
• Develop combined training materials
• Publish a repository of open source trainings
• Train the trainer activities
• Establish a network of volunteers to deliver trainings at their local regions
Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community.
Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together.
contact@ardc.edu.au
Tang, Titus
AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...
Keywords: data skills, training partnerships, data science, AI, training material
Monash University - University of Queensland training partnership in Data science and AI
https://zenodo.org/record/4287864
https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers.
contact@ardc.edu.au
Tang, Titus
data skills, training partnerships, data science, AI, training material
Training resources for sharing and reuse
This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis...
Keywords: FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance
Training resources for sharing and reuse
https://zenodo.org/record/5711887
https://dresa.org.au/materials/training-resources-for-sharing-and-reuse
This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis on sharing and reuse. This was a very collaborative project with the opportunity to work with different target audiences, topics and support expertise. To accommodate for a short timeline. We defined the scope to six topics. 1) Containers in Research 2) Data Governance 3) Software citation and Licensing 4) FAIR Data 101 5) Metadata for Training Materials 6) Machine Learning Resources.
You can watch the video on YouTube here: https://youtu.be/10Yv_BFa-mw
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance
Software publishing, licensing, and citation
A short presentation for reuse includes speaker notes.
Making software citable using a code repository, an ORCID and a licence.
Cite as
Liffers, Matthias. (2021, July 12). Software publishing, licensing, and citation. Zenodo. https://doi.org/10.5281/zenodo.5091717
Keywords: software citation, software publishing, software registry, software repository, research software
Resource type: presentation
Software publishing, licensing, and citation
https://zenodo.org/record/5091717#.YQyPtY4zaUk
https://dresa.org.au/materials/software-publishing-licensing-and-citation
A short presentation for reuse includes speaker notes.
Making software citable using a code repository, an ORCID and a licence.
**Cite as**
Liffers, Matthias. (2021, July 12). Software publishing, licensing, and citation. Zenodo. https://doi.org/10.5281/zenodo.5091717
ARDC Contact us: https://ardc.edu.au/contact-us/
Matthias Liffers
software citation, software publishing, software registry, software repository, research software
phd
ecr
researcher
support
ARDC Guide to making Software Citable
A short guide to making software citable using a code repository, an ORCID and a licence.
Cite as
Liffers, Matthias, & Honeyman, Tom. (2021). ARDC Guide to making software citable. Zenodo. https://doi.org/10.5281/zenodo.5003989
Keywords: software citation, software publishing, software registry, software repository, research software
Resource type: guide
ARDC Guide to making Software Citable
https://zenodo.org/record/5003989#.YQyRI44zaUk
https://dresa.org.au/materials/ardc-guide-to-making-software-citable
A short guide to making software citable using a code repository, an ORCID and a licence.
**Cite as**
Liffers, Matthias, & Honeyman, Tom. (2021). ARDC Guide to making software citable. Zenodo. https://doi.org/10.5281/zenodo.5003989
ARDC Contact us: https://ardc.edu.au/contact-us/
Matthias Liffers
Tom Honeyman
software citation, software publishing, software registry, software repository, research software
phd
ecr
researcher
support