ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components
The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging...
Keywords: training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure
ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components
https://zenodo.org/records/14188836
https://dresa.org.au/materials/ardc-digital-research-capabilities-and-skills-framework-the-framework-and-its-components
The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging opportunities in data management, data analysis, data linking, AI, and machine learning. The framework aligns with technological advancements and encourages ongoing discussion and contributions to evolve the coverage of digital research skills.
The framework focuses on digital research skills, excluding broader professional skills, and is intended for a wide range of stakeholders. It provides a structured approach for project teams and organisations to develop and enhance their digital research skills through six main components: a skills taxonomy, a skills glossary, a list of generalised roles, roles and skills-related profiles, learning paths, and a skills and roles matrix. The skills taxonomy classifies digital research skills into four capability families: Governance, Data, Software, and Digital Research Infrastructure Management. It provides a standard terminology for identifying and describing these skills.
contact@ardc.edu.au
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
Russell, Keith (type: Editor)
Wong, Adeline (type: Editor)
Lyrtzis, Ellen (type: Editor)
training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure
WEBINAR: AlphaFold: what's in it for me?
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the...
Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: AlphaFold: what's in it for me?
https://zenodo.org/records/7865494
https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.
Beyond the hype, what does this mean for structural biology as a field (and as a career)?
Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases.
Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/4ytn2_AiH8s
Melissa Burke (melissa@biocommons.org.au)
Morton, Craig (orcid: 0000-0001-5452-5193)
Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Role profiles for the Bureau's Stewardship Model
This presentation provides an overview of the approach being taken in the creation of a Data Stewardship framework that looks at the tools, guidance, skills and clarity of data stewardship roles at the Bureau of Meteorology. A major focus of the framework is the creation of role profiles which...
Keywords: role profiles, data stewardship, data governance, data management, skills, training, training material
Role profiles for the Bureau's Stewardship Model
https://zenodo.org/records/5711869
https://dresa.org.au/materials/role-profiles-for-the-bureau-s-stewardship-model-19ee77b4-d15e-42da-96b4-9e3056d1b3e7
This presentation provides an overview of the approach being taken in the creation of a Data Stewardship framework that looks at the tools, guidance, skills and clarity of data stewardship roles at the Bureau of Meteorology. A major focus of the framework is the creation of role profiles which provide the role description, assignment and key responsibilities.
You can watch the YouTube video here: https://youtu.be/RLf6B-NIffU
contact@ardc.edu.au
Lowenstein, Sally
role profiles, data stewardship, data governance, data management, skills, training, training material
Accelerating skills development in Data science and AI at scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...
Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Accelerating skills development in Data science and AI at scale
https://zenodo.org/records/4287746
https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally.
The talk will also cover our approach as outlined below
• Combined survey of gaps in skills and trainings for Data science and AI
• Provide seats to partners
• Share associate instructors/helpers/volunteers
• Develop combined training materials
• Publish a repository of open source trainings
• Train the trainer activities
• Establish a network of volunteers to deliver trainings at their local regions
Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community.
Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together.
contact@ardc.edu.au
Tang, Titus
AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Research Data Governance
This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders.
If you want to share...
Keywords: data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material
Research Data Governance
https://zenodo.org/records/5044585
https://dresa.org.au/materials/research-data-governance-6ad9ab90-1a29-41db-b4aa-f1988501530d
This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders.
If you want to share the video please use this:
Australian Research Data Commons, 2021. Research Data Governance. [video] Available at: https://youtu.be/K_xVQRdgCIc DOI: http://doi.org/10.5281/zenodo.5044585 [Accessed dd Month YYYY].
contact@ardc.edu.au
Australian Research Data Commons
Martinez, Paula Andrea (type: ProjectLeader)
Wilkinson, Max (type: Editor)
Callaghan,Shannon (type: Editor)
Savill, Jo (type: Editor)
Kang, Kristan (type: Editor)
Levett, Kerry (type: Editor)
Russell, Keith (type: Editor)
Simons, Natasha (type: Editor)
data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material
Developing an organisation-wide framework to transform and uplift data capabilities
At the Bureau, data is the core of everything we do. We collect millions of observations from our networks and external sources and convert these into essential weather, climate, water and ocean services. To respond effectively to the rapidly evolving data landscape, the Data 2022 and Beyond...
Keywords: data skills, research data framework, data management, data governance, data skills uplift, data capabilities, skills development, innovative technologies, stakeholder engagement, training material
Developing an organisation-wide framework to transform and uplift data capabilities
https://zenodo.org/records/4287866
https://dresa.org.au/materials/developing-an-organisation-wide-framework-to-transform-and-uplift-data-capabilities-dfc4f34d-3b4e-4d2b-88bb-7b0ca5266798
At the Bureau, data is the core of everything we do. We collect millions of observations from our networks and external sources and convert these into essential weather, climate, water and ocean services. To respond effectively to the rapidly evolving data landscape, the Data 2022 and Beyond approach has been developed to position the organisation to maximise the impact and value of data.
The approach means transforming our data governance, practices and processes. It provides opportunities to leverage, enhance and grow data skills and competencies, while harnessing innovative technologies and methodologies for managing and using data. The Bureau will highlight the complexities of developing an organisation wide data management program in an operational environment and share some examples, learnings and reflections on the uplift journey so far. Key topics will include establishing the team, resources and tools to enhance data governance practices as well as engaging and collaborating with stakeholders.
contact@ardc.edu.au
Campbell, Belinda
data skills, research data framework, data management, data governance, data skills uplift, data capabilities, skills development, innovative technologies, stakeholder engagement, training material
Monash University - University of Queensland training partnership in Data science and AI
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...
Keywords: data skills, training partnerships, data science, AI, training material
Monash University - University of Queensland training partnership in Data science and AI
https://zenodo.org/records/4287864
https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers.
contact@ardc.edu.au
Tang, Titus
data skills, training partnerships, data science, AI, training material
Skills initiatives at TERN
This presentation provides insight into current training efforts at TERN around data collection, data processing and data access and analytics. Highlighting various modes of training including hands-on data collection training, tutorials on deriving data, workshops, user manuals and training at...
Keywords: skills, training, infrastructure management, data management, TERN, ecosystems, training material
Skills initiatives at TERN
https://zenodo.org/records/5711879
https://dresa.org.au/materials/skills-initiatives-at-tern-e5ed5d17-a5c3-4da0-a240-82b01f7d1f25
This presentation provides insight into current training efforts at TERN around data collection, data processing and data access and analytics. Highlighting various modes of training including hands-on data collection training, tutorials on deriving data, workshops, user manuals and training at domain conferences. A list of resources and tools has also been provided for those interested in wanting to know more.
You can watch the video on YouTube here: https://youtu.be/mgGuKUGCu2g
contact@ardc.edu.au
Guru, Siddeswara (orcid: 0000-0002-3903-254X)
skills, training, infrastructure management, data management, TERN, ecosystems, training material
National Transfusion Dataset (NTD) Data Extraction Guide
A guide for hospital sites contributing data to the NTD.
Keywords: data management
National Transfusion Dataset (NTD) Data Extraction Guide
https://www.transfusiondataset.com/site-data-extraction
https://dresa.org.au/materials/national-transfusion-dataset-ntd-data-extraction-guide
A guide for hospital sites contributing data to the NTD.
sphpm.ntd@monash.edu
data management
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support
Research Data Management (RDM) Online Orientation Module (Macquarie University)
This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata,...
Keywords: research data, data management, FAIR data, training
Resource type: quiz, activity, other
Research Data Management (RDM) Online Orientation Module (Macquarie University)
https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0
https://dresa.org.au/materials/macquarie-university-research-data-management-rdm-online
This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata, benefits of data sharing, licensing, repositories, and best practice including the FAIR principles.
Embedded activities and examples help extend learner experience and awareness.
The course was designed to assist research students and early career researchers in complying with policies and legislative requirements, understand safe data practices, raise awareness of the benefits of data curation and data sharing (efficiency and impact) and equip them with the required knowledge to plan their data management early in their projects.
This course is divided into four sections
1. Crawl - What is Research Data and why care for it? Policy and legislative requirements. The Research Data Life-cycle. Data Management Planning (~30 mins)
2. Walk - Data sensitivity, identifiability, storage, and security (~60 mins)
3. Run - Record keeping, data retention, file naming, folder structures, version control, metadata, data sharing, open data, licences, data repositories, data citation, and ethics (~75 mins)
4. Jump - Best practice FAIR data principles (~45 mins)
5. Fight - Review - a quiz designed to review and reinforce knowledge (~15 mins)
https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0 *
*Password: "FAIR"
*Password: "FAIR"
Any queries or suggestions for course improvement can be directed to the Macquarie University Research Integrity Team: Dr Paul Sou (paul.sou@mq.edu.au) or Dr Shannon Smith (shannon.smith@mq.edu.au). Scorm files can be made available upon request.
Macquarie University
Queensland University of Technology
Shannon Smith
Jennifer Rowland
Mark Hooper
Paul Sou
Vladimir Bubalo
Brian Ballsun-Stanton
research data, data management, FAIR data, training