Register training material
9 materials found

Keywords: AI  or Phylogeny  or Cloud computing 


AWS Ramp-Up Guide: Academic Research

AWS Ramp-Up Guides offer a variety of resources to help you build your skills and knowledge of the AWS Cloud. Each guide features carefully selected digital training, classroom courses, videos, whitepapers, certifications, and more. AWS now offers four ramp-up guides that help academic...

Keywords: Machine learning, machine learning, aws, AWS, cloud, Cloud computing, cloud computing, training material, HPC training, HPC, training registry, training partnerships

AWS Ramp-Up Guide: Academic Research https://dresa.org.au/materials/aws-ramp-up-guide-academic-research AWS Ramp-Up Guides offer a variety of resources to help you build your skills and knowledge of the AWS Cloud. Each guide features carefully selected digital training, classroom courses, videos, whitepapers, certifications, and more. AWS now offers four ramp-up guides that help academic researchers who use AI, ML, Generative AI, and HPC in their research activities, as well as the essential AWS knowledge for Statistician Researchers and Research IT professionals. The guides help learners decide where to start, and how to navigate, their learning journey. Some resources will be more relevant than others based on each learner’s specific research tasks. AI, ML, Generative AI ramp-up guide (page 2) is for academic researchers who are exploring using AWS AI, ML, and Generative AI tools to improve efficiency and productivity in their research tasks. This course introduces seven components on AI and ML and ten components on Generative AI. The course starts with an introduction to AI, and covers AWS AI/ML services, such as Amazon SageMaker. The Generative AI content covers topics such as planning a Generative AI project, responsible AI Practices, security, compliance, and governance for AI solutions. The Generative AI topics also cover how to get started with Amazon Bedrock. Recommended prerequisites: basic understanding of Python. High Performance Computing ramp-up guide (page 3) is designed for academic researchers who seek to use HPC on AWS. In this course, you will be introduced to eleven components that are essential about Higher Performance Computing on AWS. The course starts with an overview of HPC on AWS, followed by topics including AWS ParallelCluster and Research HPC Workloads on AWS Batch. Recommended prerequisites: complete AWS Cloud Essentials. Statistician Researcher ramp-up guide (page 4) is specifically catered for researchers in the fields of statistics and quantum analysis. The course covers topics such as building with Amazon Redshift clusters, getting started with Amazon EMR, Machine Learning for Data Scientists, authoring visual analytics using Amazon QuickSight, Batch analytics on AWS, and Amazon Lightsail for Research. Recommended prerequisites: complete AWS Cloud Essentials. Research IT ramp-up guide (page 5) is an extension of the Foundational Researcher Learning Plan, and enables Research IT leaders and professionals to dive deeper into specific topics. The goal of this extension for Research IT professionals is to dive deeper on fundamentals, understand management capabilities and implementing guardrails, cost optimization for research workloads, become familiar with platforms for research and research partners, and learn more about AWS Landing Zone and AWS Control Tower for Research. Recommended prerequisites: Foundational Researcher Learning Plan. emmarrig@amazon.com Machine learning, machine learning, aws, AWS, cloud, Cloud computing, cloud computing, training material, HPC training, HPC, training registry, training partnerships
Amazon Braket - Knowledge Badge Readiness Path

This Learning Path helps you build knowledge and technical skills to use Amazon Braket. This Learning Path presents domain-specific content and includes courses, knowledge checks, a pre-assessment and a knowledge badge assessment. This path is a guide and presents learning in a structured order,...

Keywords: quantum, cloud, AWS, aws, Cloud computing, cloud computing

Amazon Braket - Knowledge Badge Readiness Path https://dresa.org.au/materials/amazon-braket-knowledge-badge-readiness-path This Learning Path helps you build knowledge and technical skills to use Amazon Braket. This Learning Path presents domain-specific content and includes courses, knowledge checks, a pre-assessment and a knowledge badge assessment. This path is a guide and presents learning in a structured order, it can be used as presented or you can select the content that is most beneficial. Intended Audience This path is created to help Quantum-curious developers, Solutions Architects and Enterprise technology evaluators program quantum computers and explore their potential applications. Learning Objectives After completing this learning path, you will be able to: Summarize the key benefits of Amazon Braket Explain the key concepts of Amazon Braket Explain the typical use cases for Amazon Braket Explain how to run Amazon Braket on an On-Demand Simulator and QPU Illustrate the business value of quantum technology with Amazon Braket List the key stages of quantum program development Describe how to plan the journey through the key features of Amazon Braket Create Amazon Braket quantum tasks using the Amazon Braket SDK and third-party plugins Identify the Amazon Braket resources for building on top of existing Amazon Braket deployments Differentiate between local and on-demand simulators based on appropriate use cases and project needs Examine QPU properties using both the AWS console and the Amazon Braket SDK Identify the QPU access paradigms available on Amazon Braket Express the pricing scheme for QPUs and estimate costs prior to running tasks Find and parse quantum task performance Access AWS Management Console interfaces for monitoring and managing quantum tasks, jobs, and their costs Differentiate between quantum tasks and hybrid jobs Describe the concepts of Braket Pulse Explain how to create Analog Hamiltonian Simulation programs Use error mitigation to deploy it with Amazon Braket AWS Knowledge Badge To verify your knowledge, or identify any gaps that you might have, take the knowledge badge assessment. Score 80% or higher and earn an AWS Knowledge badge that you can share with your network. The assessment is based on the courses in the learning path so we recommend completing these courses as needed. Already have some knowledge on Amazon Braket? Go directly to the assessment, test your knowledge. The score report will identify your areas of strength and direct you to the courses where you can improve any knowledge gaps. emmarrig@amazon.com quantum, cloud, AWS, aws, Cloud computing, cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute

This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.

Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...

Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing

WEBINAR: Where to go when your bioinformatics outgrows your compute https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554 This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021. Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey.  We also describe bioinformatics and computing support services available to Australian researchers.  This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar. Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/hNTbngSc-W0 Melissa Burke (melissa@biocommons.org.au) Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset

This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.

Hybridisation plays an important role in evolution, leading to the exchange of genes...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset https://dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset-51cc7740-0da1-45f1-95de-f1a47f676053 This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021. Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids). This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation

This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.

Multi-gene datasets used in phylogenetic...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation https://dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation-a6743550-b904-45e1-9635-4e481ee8f739 This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021. Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar   Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8 Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0 This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128 At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material
RONIN Research Cloud at Sydney University

Learn about Sydney University's Ronin Research Cloud Computing platform as a gateway to Amazon Web Services (AWS).

The Sydney Informatics Hub is a Core Research Facility at The University of Sydney, enabling excellence in research....

Keywords: Cloud computing, training material

RONIN Research Cloud at Sydney University https://dresa.org.au/materials/ronin-research-cloud-at-sydney-university Learn about Sydney University's Ronin Research Cloud Computing platform as a gateway to Amazon Web Services (AWS). *The Sydney Informatics Hub is a Core Research Facility at The University of Sydney, enabling excellence in research.* [https://sydney.edu.au/informatics-hub](https://sydney.edu.au/informatics-hub) [https://ronin.cloud/](https://ronin.cloud/) sih.training@sydney.edu.au Cloud computing, training material