Register training material
15 materials found

Keywords: AI  or Phylogenetics  or Training 


WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset

This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.

Hybridisation plays an important role in evolution, leading to the exchange of genes...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset https://dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset-51cc7740-0da1-45f1-95de-f1a47f676053 This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021. Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids). This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation

This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.

Multi-gene datasets used in phylogenetic...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation https://dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation-a6743550-b904-45e1-9635-4e481ee8f739 This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021. Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar   Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8 Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Managing hands-on data analysis training with Galaxy

This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023.

Event description 

Looking for flexible, scalable, real-world solutions that enable data analysis skills to...

Keywords: Bioinformatics, Galaxy, Training, Training infrastructure

WEBINAR: Managing hands-on data analysis training with Galaxy https://dresa.org.au/materials/webinar-managing-hands-on-data-analysis-training-with-galaxy-6d3e8b36-69f2-4fec-9290-d5acd068624a This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023. Event description  Looking for flexible, scalable, real-world solutions that enable data analysis skills to be taught to anyone and anywhere?  Galaxy Australia, a national web service supporting 1000s of bioinformatics tools and workflows is a fantastic solution for training on bioinformatics concepts. Their "Training Infrastructure as a Service”, or TIaaS provides free compute and back-end support for data analysis training. It is paired with 100’s of easy-to-follow tutorials developed and maintained by the worldwide community on the Galaxy Training Network (GTN). TIaaS frees trainers from setting up and maintaining computational resources for their training events so that they can focus on student needs and learning outcomes This webinar will show you how to make the most of Galaxy Australia, TIaaS and the Galaxy Training Network for bioinformatics training. We’ll highlight all the nifty features you can use to plan, manage and deliver training to any size audience efficiently. Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Managing data analysis training with Galaxy_slides: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VNE0pF6Nqgw Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Galaxy, Training, Training infrastructure
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0 This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: Effective, inclusive, and scalable training in the life sciences, clinical education and beyond

This record includes training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Effective, inclusive, and scalable training in the life sciences, clinical education and beyond’. This webinar took place on 4 November 2022.

Event description 

Scientists and educators...

Keywords: Short-format training, Clinical education, Continuing education, Professional development, Training, Lifelong learning, Pedagogy

WEBINAR: Effective, inclusive, and scalable training in the life sciences, clinical education and beyond https://dresa.org.au/materials/webinar-effective-inclusive-and-scalable-training-in-the-life-sciences-clinical-education-and-beyond-52c113ff-573c-4ae8-a3f0-482c86f1818a This record includes training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Effective, inclusive, and scalable training in the life sciences, clinical education and beyond’. This webinar took place on 4 November 2022. Event description  Scientists and educators working in the life sciences must continuously acquire new knowledge and skills to stay up-to-date with the latest methods, technologies and research. Short-format training, such as webinars, workshops and bootcamps, are popular ways of quickly learning about new topics and gaining new skills. As trainers and educators, how can we ensure that short-format training is effective and inclusive for all? How can we ensure that our learners are equipped to continue learning and applying their new skills once they return to their day jobs? And how can we do this in a way that is scalable and sustainable? The Bicycle Principles assemble education theory and community experience into a framework for improving short-format training so that it is effective, inclusive and scalable. Over 30 international experts, including colleagues from the Australian BioCommons, Melbourne Genomics and other Australian and New Zealand organisations, helped develop the principles and an associated set of recommendations. Jason Williams, Assistant Director, DNA Learning Center, Cold Spring Harbor Laboratory - a leading genomics and bioinformatics educator and project lead, joins us to discuss the Principles and how they can be applied to achieve scalable and sustainable training in a range of Australian settings. This webinar is co-hosted by Australian BioCommons and Melbourne Genomics Training Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. WILLIAMS-Jason_aus-biocommons_nov-2022 (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere:   A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/18dub7jGeQ8 Melissa Burke (melissa@biocommons.org.au) Short-format training, Clinical education, Continuing education, Professional development, Training, Lifelong learning, Pedagogy
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128 At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material
WEBINAR: Managing hands-on data analysis training with Galaxy

This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023.

Event description 

Looking for flexible, scalable, real-world solutions that enable data analysis skills to...

Keywords: Bioinformatics, Galaxy, Training, Training infrastructure

WEBINAR: Managing hands-on data analysis training with Galaxy https://dresa.org.au/materials/webinar-managing-hands-on-data-analysis-training-with-galaxy This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023. Event description  Looking for flexible, scalable, real-world solutions that enable data analysis skills to be taught to anyone and anywhere?  Galaxy Australia, a national web service supporting 1000s of bioinformatics tools and workflows is a fantastic solution for training on bioinformatics concepts. Their "Training Infrastructure as a Service”, or TIaaS provides free compute and back-end support for data analysis training. It is paired with 100’s of easy-to-follow tutorials developed and maintained by the worldwide community on the Galaxy Training Network (GTN). TIaaS frees trainers from setting up and maintaining computational resources for their training events so that they can focus on student needs and learning outcomes This webinar will show you how to make the most of Galaxy Australia, TIaaS and the Galaxy Training Network for bioinformatics training. We’ll highlight all the nifty features you can use to plan, manage and deliver training to any size audience efficiently. Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Managing data analysis training with Galaxy_slides: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VNE0pF6Nqgw Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Galaxy, Training, Training infrastructure
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: Effective, inclusive, and scalable training in the life sciences, clinical education and beyond

This record includes training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Effective, inclusive, and scalable training in the life sciences, clinical education and beyond’. This webinar took place on 4 November 2022.

Event description 

Scientists and...

Keywords: Short-format training, Clinical education, Continuing education, Professional development, Training, Lifelong learning, Pedagogy

WEBINAR: Effective, inclusive, and scalable training in the life sciences, clinical education and beyond https://dresa.org.au/materials/webinar-effective-inclusive-and-scalable-training-in-the-life-sciences-clinical-education-and-beyond This record includes training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Effective, inclusive, and scalable training in the life sciences, clinical education and beyond’. This webinar took place on 4 November 2022. **Event description**  Scientists and educators working in the life sciences must continuously acquire new knowledge and skills to stay up-to-date with the latest methods, technologies and research. Short-format training, such as webinars, workshops and bootcamps, are popular ways of quickly learning about new topics and gaining new skills. As trainers and educators, how can we ensure that short-format training is effective and inclusive for all? How can we ensure that our learners are equipped to continue learning and applying their new skills once they return to their day jobs? And how can we do this in a way that is scalable and sustainable? The Bicycle Principles assemble education theory and community experience into a framework for improving short-format training so that it is effective, inclusive and scalable. Over 30 international experts, including colleagues from the Australian BioCommons, Melbourne Genomics and other Australian and New Zealand organisations, helped develop the principles and an associated set of recommendations. Jason Williams, Assistant Director, DNA Learning Center, Cold Spring Harbor Laboratory - a leading genomics and bioinformatics educator and project lead, joins us to discuss the Principles and how they can be applied to achieve scalable and sustainable training in a range of Australian settings. This webinar is co-hosted by Australian BioCommons and Melbourne Genomics Training Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * WILLIAMS-Jason_aus-biocommons_nov-2022 (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/18dub7jGeQ8 Melissa Burke (melissa@biocommons.org.au) Short-format training, Clinical education, Continuing education, Professional development, Training, Lifelong learning, Pedagogy
Principles Aligned Institutionally-Contextualised (PAI-C) RDM Training

This GitHub repository contains resources for an institution to contextualise a principles-based RDM training with its institution's research data management policies, processes and systems.

The adoption of PAI-C across institutions will contribute to a common baseline understanding of RDM...

Keywords: PAI-C, Training, Data Management

Principles Aligned Institutionally-Contextualised (PAI-C) RDM Training https://dresa.org.au/materials/principles-aligned-institutionally-contextualised-pai-c-rdm-training This GitHub repository contains resources for an institution to contextualise a principles-based RDM training with its institution's research data management policies, processes and systems. The adoption of PAI-C across institutions will contribute to a common baseline understanding of RDM across institutions, which in turn will facilitate cross institutional management of data (e.g. when researchers move between institutions, and collaborate across institutions). Dr Adrian W. Chew (w.l.chew@unsw.edu.au) Dr Anesh Nair Dr Kyle Hemming Iftikhar Hayat Joanna Dziedzic Janice Chan Kaitlyn Houston Linlin Zhao Caitlin Savage Jessica Suna Dr Emilia Decker Sharron Stapleton PAI-C, Training, Data Management
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset

This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.

Hybridisation plays an important role in evolution, leading to the exchange of genes...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset https://dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021. Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids). This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation

This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.

Multi-gene datasets used in phylogenetic...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation https://dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021. Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8 Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material