Register training material
20 materials found

Keywords: AI  or Phylogenetics  or Python  or Machine learning 


Tutorials to learn how to use STAN

Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.

Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB

Tutorials to learn how to use STAN https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics. https://mc-stan.org/about/team/ Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
WEBINAR: Getting started with deep learning

This record includes training materials associated with the Australian BioCommons webinar  ‘Getting started with deep learning’. This webinar took place on 21 July 2021.

Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep...

Keywords: Deep learning, Neural networks, Machine learning

WEBINAR: Getting started with deep learning https://dresa.org.au/materials/webinar-getting-started-with-deep-learning-986aa2d2-594a-4a7f-836c-44d6e9d5d017 This record includes training materials associated with the Australian BioCommons webinar  ‘Getting started with deep learning’. This webinar took place on 21 July 2021. Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning. The webinar is followed by a short Q&A session. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation   Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/I1TmpnZUuiQ Melissa Burke (melissa@biocommons.org.au) Deep learning, Neural networks, Machine learning
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset

This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.

Hybridisation plays an important role in evolution, leading to the exchange of genes...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset https://dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset-51cc7740-0da1-45f1-95de-f1a47f676053 This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021. Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids). This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation

This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.

Multi-gene datasets used in phylogenetic...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation https://dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation-a6743550-b904-45e1-9635-4e481ee8f739 This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021. Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar   Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8 Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0 This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128 At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Introduction to Jupyter Notebooks

This workshop will introduce you to Jupyter Notebooks, a digital tool that has exploded in popularity in recent years for those working with data.

You will learn what they are, what they do and why you might like to use them. It is an introductory set of lessons for those who are brand new,...

Keywords: jupyter, Introductory, training material, CloudStor, markdown, Python, R

Resource type: tutorial

Introduction to Jupyter Notebooks https://dresa.org.au/materials/introduction-to-jupyter-notebooks This workshop will introduce you to Jupyter Notebooks, a digital tool that has exploded in popularity in recent years for those working with data. You will learn what they are, what they do and why you might like to use them. It is an introductory set of lessons for those who are brand new, have little or no knowledge of coding and computational methods in research. This workshop is targeted at those who are absolute beginners or ‘tech-curious’. It includes a hands-on component, using basic programming commands, but requires no previous knowledge of programming. sara.king@aarnet.edu.au Mason, Ingrid jupyter, Introductory, training material, CloudStor, markdown, Python, R
Learn to Program: Python

Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data.

We teach using Jupyter notebooks, which allow program code, results,...

Keywords: Programming, Python

Learn to Program: Python https://dresa.org.au/materials/learn-to-program-python Python has deservedly become a popular language for scientific computing. It has all the friendly features and conveniences you'd expect of a modern programming language, and also a rich set of libraries for working with data. We teach using Jupyter notebooks, which allow program code, results, visualisations and documentation to be blended seamlessly. Perfect for sharing insights with others while producing reproducible research. Join us for this live coding workshop where we write programs that produce results, using the researcher-focused training modules from the highly regarded Software Carpentry Foundation. #### You'll learn: - Introduction to the JupyterLab interface for programming - Basic syntax and data types in Python - How to load external data into Python - Creating functions (FUNCTIONS) - Repeating actions and analysing multiple data sets (LOOPS) - Making choices (IF STATEMENTS - CONDITIONALS) - Ways to visualise data in Python #### Prerequisites: No prior experience with programming is needed to attend this course. We strongly recommend attending the Start Coding without Hesitation: Programming Languages Showdown and Thinking like a computer: The Fundamentals of Programming webinars. Recordings of previously delivered webinars can be found [here](https://intersect.org.au/training/webinars/). **For more information, please click [here](https://intersect.org.au/training/course/python101).** training@intersect.org.au Programming, Python
WEBINAR: Getting started with deep learning

This record includes training materials associated with the Australian BioCommons webinar  ‘Getting started with deep learning’. This webinar took place on 21 July 2021.

Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces...

Keywords: Deep learning, Neural networks, Machine learning

WEBINAR: Getting started with deep learning https://dresa.org.au/materials/webinar-getting-started-with-deep-learning-d7b1fac1-ebae-426d-8bc0-d82cfda8e8ad This record includes training materials associated with the Australian BioCommons webinar  ‘Getting started with deep learning’. This webinar took place on 21 July 2021. Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning. The webinar is followed by a short Q&A session. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/I1TmpnZUuiQ Melissa Burke (melissa@biocommons.org.au) Deep learning, Neural networks, Machine learning
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset

This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.

Hybridisation plays an important role in evolution, leading to the exchange of genes...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset https://dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021. Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids). This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation

This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.

Multi-gene datasets used in phylogenetic...

Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing

WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation https://dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021. Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis. This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8 Melissa Burke (melissa@biocommons.org.au) Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material
Deep Learning for Natural Language Processing

This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for...

Keywords: Deep learning, NLP, Machine learning

Resource type: presentation, tutorial

Deep Learning for Natural Language Processing https://dresa.org.au/materials/deep-learning-for-natural-language-processing This workshop is designed to be instructor led and consists of two parts. Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset. Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for attendees to train their own RNN. The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop introduces natural language as data for deep learning. We discuss various techniques and software packages (e.g. python strings, RegEx, NLTK, Word2Vec) that help us convert, clean, and formalise text data “in the wild” for use in a deep learning model. We then explore the training and testing of a Recurrent Neural Network on the data to complete a real world task. We will be using TensorFlow v2 for this purpose. datascienceplatform@monash.edu Deep learning, NLP, Machine learning
Getting Started with Deep Learning

This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning...

Keywords: Deep learning, Machine learning

Resource type: presentation

Getting Started with Deep Learning https://dresa.org.au/materials/getting-started-with-deep-learning This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning application. The lecture also provides pointers to various resources you could use to gain a stronger foothold in deep learning. This lecture is targeted at researchers who may be complete beginners in machine learning, deep learning, or even with programming, but who would like to get into the space to build AI systems hands-on. datascienceplatform@monash.edu Deep learning, Machine learning
Semi-Supervised Deep Learning

Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled...

Keywords: Deep learning, Machine learning, semi-supervised

Resource type: presentation, tutorial

Semi-Supervised Deep Learning https://dresa.org.au/materials/semi-supervised-deep-learning Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled data. If successful, it allows better training of a model despite the limited amount of labelled data available. This workshop is designed to be instructor led and covers various semi-supervised learning techniques available in the literature. The workshop consists of a lecture introducing at a high level a selection of techniques that are suitable for semi-supervised deep learning. We discuss how these techniques can be implemented and the underlying assumptions they require. The lecture is followed by a hands-on session where attendees implement a semi-supervised learning technique to train a neural network. We observe and discuss the changing performance and behaviour of the network as varying degrees of labelled and unlabelled data is provided to the network during training. datascienceplatform@monash.edu Deep learning, Machine learning, semi-supervised
Introduction to Deep Learning and TensorFlow

This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain...

Keywords: Deep learning, convolutional neural network, tensorflow, Machine learning

Resource type: presentation, tutorial

Introduction to Deep Learning and TensorFlow https://dresa.org.au/materials/introduction-to-deep-learning-and-tensorflow This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise. Part 1 - Introduction to Deep Learning and TensorFlow Part 2 - Introduction to Convolutional Neural Networks The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop is an introduction to how deep learning works and how you could create a neural network using TensorFlow v2. We start by learning the basics of deep learning including what a neural network is, how information passes through the network, and how the network learns from data through the automated process of gradient descent. Workshop attendees would build, train and evaluate a neural network using a cloud GPU (Google Colab). In part 2, we look at image data and how we could train a convolution neural network to classify images. Workshop attendees will extend their knowledge from the first part to design, train and evaluate this convolutional neural network. datascienceplatform@monash.edu Deep learning, convolutional neural network, tensorflow, Machine learning
WEBINAR: Getting started with deep learning

This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.

Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces...

Keywords: Deep learning, Bioinformatics, Machine learning

Resource type: video, presentation

WEBINAR: Getting started with deep learning https://dresa.org.au/materials/webinar-getting-started-with-deep-learning This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021. Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning. The webinar is followed by a short Q&A session. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/I1TmpnZUuiQ Melissa Burke (melissa@biocommons.org.au) Deep learning, Bioinformatics, Machine learning