Register training material
5 materials found

Difficulty level: Not specified 

and

Keywords: AI  or ARDC skills framework 


ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components

The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging...

Keywords: training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure

ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components https://dresa.org.au/materials/ardc-digital-research-capabilities-and-skills-framework-the-framework-and-its-components The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging opportunities in data management, data analysis, data linking, AI, and machine learning. The framework aligns with technological advancements and encourages ongoing discussion and contributions to evolve the coverage of digital research skills. The framework focuses on digital research skills, excluding broader professional skills, and is intended for a wide range of stakeholders. It provides a structured approach for project teams and organisations to develop and enhance their digital research skills through six main components: a skills taxonomy, a skills glossary, a list of generalised roles, roles and skills-related profiles, learning paths, and a skills and roles matrix. The skills taxonomy classifies digital research skills into four capability families: Governance, Data, Software, and Digital Research Infrastructure Management. It provides a standard terminology for identifying and describing these skills. contact@ardc.edu.au Russell, Keith (type: Editor) Wong, Adeline (type: Editor) Lyrtzis, Ellen (type: Editor) training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure
WEBINAR: AlphaFold: what's in it for me?

This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.

Event description 

AlphaFold has taken the scientific world by storm with the ability to accurately predict the...

Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning

WEBINAR: AlphaFold: what's in it for me? https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0 This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023. Event description  AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.  Beyond the hype, what does this mean for structural biology as a field (and as a career)? Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases. Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/4ytn2_AiH8s Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
ARDC digital research capabilities and skills framework

This informational flyer outlines the value of skills frameworks and describes at a high level the various elements of the ARDC's Capabilities and Skills Framework.

Capabilities and Skills Landscape
Glossary - Framework terminology
Data and Digital Research roles
Skills/Role...

Keywords: training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework

ARDC digital research capabilities and skills framework https://dresa.org.au/materials/ardc-digital-research-capabilities-and-skills-framework-3b376311-87dd-470f-bb8d-e99459434c97 This informational flyer outlines the value of skills frameworks and describes at a high level the various elements of the ARDC's Capabilities and Skills Framework. Capabilities and Skills Landscape Glossary - Framework terminology Data and Digital Research roles Skills/Role profiles Learning paths Skills/Data roles matrix contact@ardc.edu.au Savill, Jo (type: Editor) Duncan, Ian (type: Editor) Unsworth, Kathryn (type: Editor) Murphy, Paul (type: Editor) training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework
Accelerating skills development in Data science and AI at scale

At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...

Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material

Accelerating skills development in Data science and AI at scale https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128 At the Monash Data Science and AI  platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally. The talk will also cover our approach as outlined below •        Combined survey of gaps in skills and trainings for Data science and AI •        Provide seats to partners •        Share associate instructors/helpers/volunteers •        Develop combined training materials •        Publish a repository of open source trainings •        Train the trainer activities •        Establish a network of volunteers to deliver trainings at their local regions Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community. Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together. contact@ardc.edu.au AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI

We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...

Keywords: data skills, training partnerships, data science, AI, training material

Monash University - University of Queensland training partnership in Data science and AI https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers. contact@ardc.edu.au data skills, training partnerships, data science, AI, training material