Register training material
146 material found

Difficulty level: Not specified 


ARDC 2023 Skills Summit - Frameworks Panel Discussion (Day 2 - February 10, 2023)

Presentations to the ARDC Skills Summit 2023 (Panel Talks Day 2 - February 10th, 2023)

Dr Peter Derbyshire - Unpacking the ATSE report - Our STEM skilled future and the need for a national skills taxonomy
Anthony Beitz - Applying Skills Framework for the Information Age (SFIA) within DSTG
Kate...

Keywords: training material, research, training, skills, framework, sfia, eresearch, skills frameworks, skills taxonomies, skills classifications, skill shortages, transferrable skills, applying SFIA, training gaps, workforce requirements, job requirements, DReSA, digital literacy, applying skills frameworks, Australian Skills Classification framework, ASC

ARDC 2023 Skills Summit - Frameworks Panel Discussion (Day 2 - February 10, 2023) https://dresa.org.au/materials/ardc-2023-skills-summit-frameworks-panel-discussion-day-2-february-10-2023 Presentations to the ARDC Skills Summit 2023 (Panel Talks Day 2 - February 10th, 2023) Dr Peter Derbyshire - Unpacking the ATSE report - Our STEM skilled future and the need for a national skills taxonomy Anthony Beitz - Applying Skills Framework for the Information Age (SFIA) within DSTG Kate Morrison - A national skills taxonomy - Australian Skills Classification (ASC) Kathryn Unsworth - ARDC Digital Research Capabilities & Skills Framework Peter Embelton - Enhancing skills uplift for researchers through the alignment and implementation of skills frameworks These presentations cover skills frameworks/taxonomies/classifications, skill shortages, transferrable skills, applying SFIA (Skills Framework for the Information Age), Australian Skills Classification framework, training gaps, workforce/job requirements, Digital Research Skills Australasia (DReSA), digital literacy and applying skills frameworks. contact@ardc.edu.au training material, research, training, skills, framework, sfia, eresearch, skills frameworks, skills taxonomies, skills classifications, skill shortages, transferrable skills, applying SFIA, training gaps, workforce requirements, job requirements, DReSA, digital literacy, applying skills frameworks, Australian Skills Classification framework, ASC
ARDC 2023 Skills Summit Lightning Talks (Day 1 - February 9, 2023)

Presentations to the ARDC Skills Summit 2023 (Lightning Talks Day 1 - February 9th, 2023)
Dr Pablo Franco - Assessing the effectiveness of training: Teaching digital skills to researchers
Aidan Wilson - Scaling training operations & succession planning
Dr Paula Martinez - Building...

Keywords: training material, research, training, Kirkpatrick framework, RezBaz, impact, skills, impact assessment, training at scale, succession planning, automated training organisation systems, trainer workforce, research software community, participation models, community building, visible research software interest group, carpentries, social infrastructure

ARDC 2023 Skills Summit Lightning Talks (Day 1 - February 9, 2023) https://dresa.org.au/materials/ardc-2023-skills-summit-lightning-talks-day-1-february-9-2023 Presentations to the ARDC Skills Summit 2023 (Lightning Talks Day 1 - February 9th, 2023) Dr Pablo Franco - Assessing the effectiveness of training: Teaching digital skills to researchers Aidan Wilson - Scaling training operations & succession planning Dr Paula Martinez - Building community Dr Mark Crowe - Bringing training to research communities - ResBaz Liz Stokes - The Carpentries Partnership These presentations cover theoretical frameworks for assessing training, The Kirkpatrick Model of Training Evaluation, outreach, RezBaz, impact assessment, training at scale, succession planning, automated training organisation systems, trainer workforce, research software community, participation models, community building ideas, visible research software interest group, The Carpentries and social infrastructure. contact@ardc.edu.au training material, research, training, Kirkpatrick framework, RezBaz, impact, skills, impact assessment, training at scale, succession planning, automated training organisation systems, trainer workforce, research software community, participation models, community building, visible research software interest group, carpentries, social infrastructure
Professionalizing Training - Origin Stories for the Modern Researcher

Keynote Presentation for the ARDC Skills Summit 2023

This keynote presentation provides a brief outline of Jason William’s experience and an overview of the training initiatives he has been involved in. His presentation looks at what makes a good researcher and provokes thinking about modern...

Keywords: research, training, skills, superheroes, formal, career, change, workshops, milestones, community, principles, bicycle principles, professionalizing, training material

Professionalizing Training - Origin Stories for the Modern Researcher https://dresa.org.au/materials/professionalizing-training-origin-stories-for-the-modern-researcher Keynote Presentation for the ARDC Skills Summit 2023 This keynote presentation provides a brief outline of Jason William’s experience and an overview of the training initiatives he has been involved in. His presentation looks at what makes a good researcher and provokes thinking about modern researchers and the need for them to get serious bout career-spanning training. Jason also provides an overview of the Bike Principles and focuses on the first Bike Principles recommendation - Professionalize the training of short-format training instructors and instructional designers. contact@ardc.edu.au research, training, skills, superheroes, formal, career, change, workshops, milestones, community, principles, bicycle principles, professionalizing, training material
ARDC 2023 Skills Summit Lightning Talks (Day 2 - February 10, 2023)

Presentations to the ARDC Skills Summit 2023 (Lightning Talks Day 2 - February 10th, 2023)
Dr Nisha Ghatak - From local to the global: NeSI's efforts in building digital skills capabilities across Aotearoa
Dr Melissa Burke - No one has time for training. Is doing less the answer?
Dr Giorgia Mori...

Keywords: training material, digital skills capability, digital skills partnerships, The Carpentries, bioinformatics training, cooperative training approaches, industry partnered training, learner pathways, user guidance, new training approaches, innovative training approaches

ARDC 2023 Skills Summit Lightning Talks (Day 2 - February 10, 2023) https://dresa.org.au/materials/ardc-2023-skills-summit-lightning-talks-day-2-february-10-2023 Presentations to the ARDC Skills Summit 2023 (Lightning Talks Day 2 - February 10th, 2023) Dr Nisha Ghatak - From local to the global: NeSI's efforts in building digital skills capabilities across Aotearoa Dr Melissa Burke - No one has time for training. Is doing less the answer? Dr Giorgia Mori - Industry training collaborations. Is this the future? Ann Backhaus - Skills pathways for developing the research workforce - status quo or let's get creative? These presentations cover a national perspective of New Zealand's digital skills capability and partnerships, The Carpentries, bioinformatics training, innovative and cooperative training approaches, industry-partnered training, learner pathways, and the importance of user guidance. contact@ardc.edu.au training material, digital skills capability, digital skills partnerships, The Carpentries, bioinformatics training, cooperative training approaches, industry partnered training, learner pathways, user guidance, new training approaches, innovative training approaches
Setting The Scene

Opening Address for the ARDC Skills Summit 2023

This presentation provides a welcome to the ARDC Skills Summit 2023, and includes an outline of the importance of digital research skills to data-enriched research, the value of skills training and highly skilled research workforce to the broader...

Keywords: research, training, skills, training material, ARDC, research data commons, digital research skills agenda

Setting The Scene https://dresa.org.au/materials/setting-the-scene Opening Address for the ARDC Skills Summit 2023 This presentation provides a welcome to the ARDC Skills Summit 2023, and includes an outline of the importance of digital research skills to data-enriched research, the value of skills training and highly skilled research workforce to the broader economy, and an overview of related ARDC activity. contact@ardc.edu.au research, training, skills, training material, ARDC, research data commons, digital research skills agenda
Introducing Computational Thinking

This workshop is for researchers at all career stages who want to understand the uses and the building blocks of computational thinking. This skill is useful for all kinds of problem solving, whether in real life or in computing.

The workshop will not teach computer programming per se. Instead...

Keywords: computational skills, data skills

Resource type: tutorial

Introducing Computational Thinking https://dresa.org.au/materials/introducing-computational-thinking This workshop is for researchers at all career stages who want to understand the uses and the building blocks of computational thinking. This skill is useful for all kinds of problem solving, whether in real life or in computing. The workshop will not teach computer programming per se. Instead it will cover the thought processes involved should you want to learn to program. s.stapleton@griffith.edu.au computational skills, data skills
Digital research skills trainer certification guide

This guide to certification is for those who currently design, develop and deliver training as full-time trainers or where training is part of their role, and for those who are considering becoming a skills trainer.

Keywords: digital research skills training, trainer certification, training material

Digital research skills trainer certification guide https://dresa.org.au/materials/digital-research-skills-trainer-certification-guide This guide to certification is for those who currently design, develop and deliver training as full-time trainers or where training is part of their role, and for those who are considering becoming a skills trainer. contact@ardc.edu.au digital research skills training, trainer certification, training material
Guide to designing digital research skills training materials: presentations and videos

The Australian Research Data Commons (ARDC) Guide to Designing Digital Research Skills Training Materials: Presentations and Videos aims to support training materials creators, trainers and national training infrastructure providers in the design and delivery of presentations and videos while...

Keywords: digital research skills training, learning design, training presentations, training videos, training material

Guide to designing digital research skills training materials: presentations and videos https://dresa.org.au/materials/guide-to-designing-digital-research-skills-training-materials-presentations-and-videos The Australian Research Data Commons (ARDC) Guide to Designing Digital Research Skills Training Materials: Presentations and Videos aims to support training materials creators, trainers and national training infrastructure providers in the design and delivery of presentations and videos while also encouraging the sharing and reuse of their training materials. It aims to facilitate the design, development and delivery of digital research and data skills videos and presentations in alignment with best practices for learning and training.  This tool is informed by the Universal Design for Learning framework, which aims to eliminate barriers in the design of learning materials and make content accessible to all. contact@ardc.edu.au digital research skills training, learning design, training presentations, training videos, training material
Guide to designing digital research skills training materials: textual materials

The Australian Research Data Commons (ARDC) Guide to Designing Digital Research Skills Training Materials: Textual Materials aims to support training materials creators, trainers and national training infrastructure providers in the creation of textual guides while also encouraging the sharing...

Keywords: digital research skills training, learning design, textual training materials, training material

Guide to designing digital research skills training materials: textual materials https://dresa.org.au/materials/guide-to-designing-digital-research-skills-training-materials-textual-materials The Australian Research Data Commons (ARDC) Guide to Designing Digital Research Skills Training Materials: Textual Materials aims to support training materials creators, trainers and national training infrastructure providers in the creation of textual guides while also encouraging the sharing and reuse of their training materials. It aims to facilitate the design, development and delivery of textual guides on digital research and data skills in alignment with best practices in learning and training. This tool is informed by the Universal Design for Learning principles which aims to eliminate barriers in the design of learning materials to make content accessible to all. contact@ardc.edu.au digital research skills training, learning design, textual training materials, training material
WORKSHOP: RNA-Seq: reads to differential genes and pathways

This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.

Event description

RNA sequencing (RNA-seq) is a common method...

Keywords: Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re

WORKSHOP: RNA-Seq: reads to differential genes and pathways https://dresa.org.au/materials/workshop-rna-seq-reads-to-differential-genes-and-pathways This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022. **Event description** RNA sequencing (RNA-seq) is a common method used to understand the differences in gene expression and molecular pathways between two or more groups. This workshop introduces the fundamental concepts of RNA sequencing experiments and will allow you to try out the analysis using data from a study of Williams-Beuren Syndrome, a rare disease.  In the first part of the workshop you will learn how to convert sequence reads into analysis ready count data. To do this we will use nf-core/rnaseq - a portable, scalable, reproducible and publicly available workflow on Pawsey Nimbus Cloud. In the second part of the workshop you will use the count data you created to identify differential genes and pathways using R/Rstudio. By the end of the workshop, you should be able to perform your own RNA-seq analysis for differential gene expression and pathway analysis! This workshop is presented by the Australian BioCommons and Sydney Informatics Hub with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * RNAseq reads to differential genes and pathways - Additional Resources (PDF): Additional resources compiled by the Sydney Informatics Hub * rnaseq_DE_analysis_Day2.html: HTML version of code used on day 2 of the workshop * rnaseq_DE_analysis_Day2.Rmd: R Markdown version of code used on day 2 of the workshop * RNAseq reads to differential genes and pathways_Q_and_A (PDF): Archive of questions and their answers from the workshop Slack Channel. **Materials shared elsewhere:** This workshop follows the tutorial ‘RNA-seq: reads to differential gene expression workshop series’ developed by the Sydney Informatics Hub. https://sydney-informatics-hub.github.io/training.RNAseq.series-quarto/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
Exploring Chi-Square and Correlation in SPSS

This hands-on training is designed to familiarize you further with the SPSS data analysis environment. In this session, we will traverse into the realm of inferential statistics, beginning with linear correlation and reliability. We will present a brief conceptual overview and the SPSS procedures...

Keywords: Data Analysis, SPSS

Exploring Chi-Square and Correlation in SPSS https://dresa.org.au/materials/exploring-chi-square-and-correlation-in-spss-d38c2067-302a-4194-80a2-71f2311f8756 This hands-on training is designed to familiarize you further with the SPSS data analysis environment. In this session, we will traverse into the realm of inferential statistics, beginning with linear correlation and reliability. We will present a brief conceptual overview and the SPSS procedures for computing Pearson's r and Spearman's Rho, followed by a short session on reliability . In the remainder of the session, we will explore the Chi-Square Goodness-of-Fit test and Chi-Square Test of Association for analysing categorical data. #### You'll learn: - Perform Pearson’s Correlation (r) Test - Perform Spearman’s Rho Correlation (⍴) Test - Carry out basic reliability analysis on survey items - Perform Chi-Square Goodness-of-Fit test - Perform Chi-Square Test of Association #### Prerequisites: In order to participate, attendees must have a licensed copy of SPSS installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This workshop is recommended for researchers and postgraduate students who have previously attended the Intersect’s [Data Entry and Processing in SPSS](https://intersect.org.au/training/course/spss101/) workshop. **For more information, please click [here](https://intersect.org.au/training/course/spss102).** training@intersect.org.au Data Analysis, SPSS
WEBINAR: Variant interpretation: from the clinic to the lab… and back again

This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022.

Event description

The use of genomic testing is increasing...

Keywords: Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling

WEBINAR: Variant interpretation: from the clinic to the lab… and back again https://dresa.org.au/materials/webinar-variant-interpretation-from-the-clinic-to-the-lab-and-back-again This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022. **Event description** The use of genomic testing is increasing rapidly as the cost of genome sequencing decreases. Many areas of the health workforce are upskilling in genomics to help meet the increased demand. From clinicians learning how to use the right test, for the right patient, at the right time, to medical scientists learning how to interpret and classify variants, and data scientists to learning how to better create and continuously refine the pipelines and software to handle and curate big data. In this webinar, we’ll hear from two people working at the coalface of variant interpretation – one in a diagnostic laboratory and the other in a cancer research laboratory. Naomi Baker is Medical Scientist at Victorian Clinical Genetics Services. She helps process hundreds of genomic tests per year to find the variants that cause rare diseases. She’ll explain the clinical variant interpretation processes she uses, the pipelines, professions and people involved. Joep Vissers is a Curation Team Leader, at the University of Melbourne Centre for Cancer Research, Department of Clinical Pathology. Joep, who also teaches cancer biology at the University, will describe how he uses variant interpretation in his work at the research/clinical interface, and the shift in mindset required when working with data for these different purposes. Amy Nisselle, Genomics Workforce Lead at Melbourne Genomics, will then briefly outline some of the education programs available in clinical variant interpretation. This webinar is co-presented by Australian BioCommons and Melbourne Genomics Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * Variant interpretation from the clinic to the lab and back again.pdf: A PDF copy of the slides presented during the webinar. **Materials shared elsewhere:** A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/wLMhwIiK8Lw Melissa Burke (melissa@biocommons.org.au) Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia

This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.

Event description 

Have you discovered a...

Keywords: Bioinformatics, Workflows, FAIR, Galaxy Australia

WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia https://dresa.org.au/materials/webinar-here-s-one-we-prepared-earlier-re-creating-bioinformatics-methods-and-workflows-with-galaxy-australia This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022. **Event description**  Have you discovered a brilliant bioinformatics workflow but you’re not quite sure how to use it? In this webinar we will introduce the power of Galaxy for construction and (re)use of reproducible workflows, whether building workflows from scratch, recreating them from published descriptions and/or extracting from Galaxy histories. Using an established bioinformatics method, we’ll show you how to: * Use the workflows creator in Galaxy Australia  * Build a workflow based on a published method * Annotate workflows so that you (and others) can understand them  * Make workflows finable and citable (important and very easy to do!) Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * GalaxyWorkflows_Slides (PDF): A PDF copy of the slides presented during the webinar. **Materials shared elsewhere:** A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/IMkl6p7hkho Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, FAIR, Galaxy Australia
WEBINAR: Effective, inclusive, and scalable training in the life sciences, clinical education and beyond

This record includes training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Effective, inclusive, and scalable training in the life sciences, clinical education and beyond’. This webinar took place on 4 November 2022.

Event description 

Scientists and...

Keywords: Short-format training, Clinical education, Continuing education, Professional development, Training, Lifelong learning, Pedagogy

WEBINAR: Effective, inclusive, and scalable training in the life sciences, clinical education and beyond https://dresa.org.au/materials/webinar-effective-inclusive-and-scalable-training-in-the-life-sciences-clinical-education-and-beyond This record includes training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Effective, inclusive, and scalable training in the life sciences, clinical education and beyond’. This webinar took place on 4 November 2022. **Event description**  Scientists and educators working in the life sciences must continuously acquire new knowledge and skills to stay up-to-date with the latest methods, technologies and research. Short-format training, such as webinars, workshops and bootcamps, are popular ways of quickly learning about new topics and gaining new skills. As trainers and educators, how can we ensure that short-format training is effective and inclusive for all? How can we ensure that our learners are equipped to continue learning and applying their new skills once they return to their day jobs? And how can we do this in a way that is scalable and sustainable? The Bicycle Principles assemble education theory and community experience into a framework for improving short-format training so that it is effective, inclusive and scalable. Over 30 international experts, including colleagues from the Australian BioCommons, Melbourne Genomics and other Australian and New Zealand organisations, helped develop the principles and an associated set of recommendations. Jason Williams, Assistant Director, DNA Learning Center, Cold Spring Harbor Laboratory - a leading genomics and bioinformatics educator and project lead, joins us to discuss the Principles and how they can be applied to achieve scalable and sustainable training in a range of Australian settings. This webinar is co-hosted by Australian BioCommons and Melbourne Genomics Training Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * WILLIAMS-Jason_aus-biocommons_nov-2022 (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/18dub7jGeQ8 Melissa Burke (melissa@biocommons.org.au) Short-format training, Clinical education, Continuing education, Professional development, Training, Lifelong learning, Pedagogy
Principles Aligned Institutionally-Contextualised (PAI-C) RDM Training

This GitHub repository contains resources for an institution to contextualise a principles-based RDM training with its institution's research data management policies, processes and systems.

The adoption of PAI-C across institutions will contribute to a common baseline understanding of RDM...

Keywords: PAI-C, Training, Data Management

Principles Aligned Institutionally-Contextualised (PAI-C) RDM Training https://dresa.org.au/materials/principles-aligned-institutionally-contextualised-pai-c-rdm-training This GitHub repository contains resources for an institution to contextualise a principles-based RDM training with its institution's research data management policies, processes and systems. The adoption of PAI-C across institutions will contribute to a common baseline understanding of RDM across institutions, which in turn will facilitate cross institutional management of data (e.g. when researchers move between institutions, and collaborate across institutions). Dr Adrian W. Chew (w.l.chew@unsw.edu.au) PAI-C, Training, Data Management
WEBINAR: Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud

This record includes training materials associated with the Australian BioCommons webinar ‘Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud’. This webinar took place on 20 September 2022.

Event description 

Bioinformatics workflows can...

Keywords: Bioinformatics, Workflows, Nextflow, Containerisation

WEBINAR: Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud https://dresa.org.au/materials/webinar-portable-reproducible-and-scalable-bioinformatics-workflows-using-nextflow-and-pawsey-nimbus-cloud This record includes training materials associated with the Australian BioCommons webinar ‘Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud’. This webinar took place on 20 September 2022. **Event description**  Bioinformatics workflows can support portable, reproducible and scalable analysis of omics datasets but using workflows can be challenging for both beginners and experienced bioinformaticians. Beginners face a steep learning curve to be able to build and deploy their own bioinformatics workflows while those with more experience face challenges productionising and scaling code for custom workflows and big data.  Bioinformaticians across the world are using Nextflow to build and manage workflows. Many of these workflows are shared for others to use and supported by the community via nf-co.re. So far, 39 workflows for omics data are available with another 23 under development. These workflows cover common analyses such as RNAseq, mapping, variant calling, single cell transcriptomics and more and can be easily deployed by anyone, regardless of skill level. In this webinar, Nandan Deshpande from the Sydney Informatics Hub, University of Sydney, will discuss how you can deploy freely available Nextflow (nf.co-re) bioinformatics workflows with a single command. We describe how you can quickly get started deploying these workflows using Pawsey Nimbus Cloud. For advanced users, we introduce you to Nextflow concepts to get you started with building your own workflows that will save you time and support reproducible, portable and scalable analysis. In the latter half of the webinar, Sarah Beecroft from the Pawsey Supercomputing Research Centre will talk about their Nimbus Cloud systems. While Nextflow supports portability and can run on many computing infrastructures, we describe why we specifically love using Nimbus with Nextflow for many bioinformatics projects. We will describe some of the nf.co-re workflows that we have used on Nimbus and the research outcomes. We will also cover when not to use Nimbus and the alternatives we recommend.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * Nextflow_Nimbus_slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VnLX63yXbJU Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, Nextflow, Containerisation
WORKSHOP: Single cell RNAseq analysis in R

This record includes training materials associated with the Australian BioCommons workshop Single cell RNAseq analysis in R. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.

Event description

Analysis and interpretation of single cell RNAseq (scRNAseq) data...

Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq

WORKSHOP: Single cell RNAseq analysis in R https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r This record includes training materials associated with the Australian BioCommons workshop Single cell RNAseq analysis in R. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022. **Event description** Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.  We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * scRNAseq_Slides (PDF): Slides used to introduce topics * scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop * scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants * scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere: This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’ https://swbioinf.github.io/scRNAseqInR_Doco/index.html This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here. Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WEBINAR: Getting started with whole genome mapping and variant calling on the command line

This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022.

Event description 

Life scientists are increasingly using whole...

Keywords: Genome mapping, Variant calling, Bioinformatics, Workflows

WEBINAR: Getting started with whole genome mapping and variant calling on the command line https://dresa.org.au/materials/webinar-getting-started-with-whole-genome-mapping-and-variant-calling-on-the-command-line This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022. **Event description**  Life scientists are increasingly using whole genome sequencing (WGS) to ask and answer research questions across the tree of life. Before any of this work can be done, there is the essential but challenging task of processing raw sequencing data. Processing WGS data is a computationally challenging, multi-step process used to create a map of an individual’s genome and identify genetic variant sites. The tools you use in this process and overall workflow design can look very different for different researchers, it all depends on your dataset and the research questions you’re asking. Luckily, there are lots of existing WGS processing tools and pipelines out there, but knowing where to start and what your specific needs are is hard work, no matter how experienced you are.  In this webinar we will walk through the essential steps and considerations for researchers who are running and building reproducible WGS mapping and variant calling pipelines at the command line interface. We will discuss how to choose and evaluate a pipeline that is right for your dataset and research questions, and how to get access to the compute resources you need Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * WGS mapping and variant calling _slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/Q2EceFyizio Melissa Burke (melissa@biocommons.org.au) Genome mapping, Variant calling, Bioinformatics, Workflows
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software

This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.

Event description

bio.tools provides easy access to essential...

Keywords: Bioinformatics, Research software, EDAM, Workflows, FAIR

WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software https://dresa.org.au/materials/webinar-bio-tools-making-it-easier-to-find-understand-and-cite-biological-tools-and-software-9180e32a-f4f5-4993-a90a-a9bfcfafd4f3 This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022. **Event description** bio.tools provides easy access to essential scientific and technical information about software, command-line tools, databases and services. It’s backed by ELIXIR, the European Infrastructure for Biological Information, and is being used in Australia to register software (e.g. Galaxy Australia, prokka). It underpins the information provided in the Australian BioCommons discovery service ToolFinder. Hans Ienasescu and Matúš Kalaš join us to explain how bio.tools uses a community driven, open science model to create this collection of resources and how it makes it easier to find, understand, utilise and cite them. They’ll delve into how bio.tools is using standard semantics (e.g. the EDAM ontology) and syntax (e.g. biotoolsSchema) to enrich the annotation and description of tools and resources. Finally, we’ll see how the community can contribute to bio.tools and take advantage of its key features to share and promote their own research software.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * biotools_EDAM_slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/K0J4_bAUG3Y Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Research software, EDAM, Workflows, FAIR
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022. **Event description** Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: - Spreadsheets, organising data and first steps with R - Manipulating and analysing data with dplyr - Data visualisation - Summarized experiments and getting started with Bioconductor This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop - Recommended resources (PDF): A list of resources recommended by trainers and participants - Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. **Materials shared elsewhere:** This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software

This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.

Event description

bio.tools provides easy access to essential...

Keywords: Bioinformatics, Research software, EDAM, Workflows, FAIR

WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software https://dresa.org.au/materials/webinar-bio-tools-making-it-easier-to-find-understand-and-cite-biological-tools-and-software This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022. **Event description** bio.tools provides easy access to essential scientific and technical information about software, command-line tools, databases and services. It’s backed by ELIXIR, the European Infrastructure for Biological Information, and is being used in Australia to register software (e.g. Galaxy Australia, prokka). It underpins the information provided in the Australian BioCommons discovery service ToolFinder. Hans Ienasescu and Matúš Kalaš join us to explain how bio.tools uses a community driven, open science model to create this collection of resources and how it makes it easier to find, understand, utilise and cite them. They’ll delve into how bio.tools is using standard semantics (e.g. the EDAM ontology) and syntax (e.g. biotoolsSchema) to enrich the annotation and description of tools and resources. Finally, we’ll see how the community can contribute to bio.tools and take advantage of its key features to share and promote their own research software.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - biotools_EDAM_slides (PDF): A PDF copy of the slides presented during the webinar. **Materials shared elsewhere:** A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/K0J4_bAUG3Y Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Research software, EDAM, Workflows, FAIR
Beyond Basics: Conditionals and Visualisation in Excel

After cleaning your database, you may need to apply some conditional analysis to glean greater insights from your data. You may also want to enhance your charts for inclusion into a manuscript, thesis or report by adding some statistical elements. This course will cover conditional syntax, nested...

Keywords: Data Analysis, Excel

Beyond Basics: Conditionals and Visualisation in Excel https://dresa.org.au/materials/beyond-basics-conditionals-and-visualisation-in-excel After cleaning your database, you may need to apply some conditional analysis to glean greater insights from your data. You may also want to enhance your charts for inclusion into a manuscript, thesis or report by adding some statistical elements. This course will cover conditional syntax, nested functions, statistical charting and outlier identification. Armed with the tips and tricks from our introductory Excel for Researchers course, you will be able to tap into even more of Excel's diverse functionality and apply it to your research project. #### You'll learn: - Cell syntax and conditional formatting - IF functions - Pivot Table summaries - Nesting multiple AND/IF/OR calculations - Combining nested calculations with conditional formatting to bring out important elements of the dataset - MINIFS function - Box plot creation and outlier identification - Trendline and error bar chart enhancements #### Prerequisites: Familiarity with the content of Excel for Researchers, specifically: the general Office/Excel interface (menus, ribbons/toolbars, etc.) workbooks and worksheets absolute and relative references, e.g. $A$1, A1. simple ranges, e.g. A1:B5 **For more information, please click [here](https://intersect.org.au/training/course/excel201).** training@intersect.org.au Data Analysis, Excel
Exploring Chi-Square and correlation in SPSS

This hands-on training is designed to familiarize you further with the SPSS data analysis environment. In this session, we will traverse into the realm of inferential statistics, beginning with linear correlation and reliability. We will present a brief conceptual overview and the SPSS procedures...

Keywords: Data Analysis, SPSS

Exploring Chi-Square and correlation in SPSS https://dresa.org.au/materials/exploring-chi-square-and-correlation-in-spss This hands-on training is designed to familiarize you further with the SPSS data analysis environment. In this session, we will traverse into the realm of inferential statistics, beginning with linear correlation and reliability. We will present a brief conceptual overview and the SPSS procedures for computing Pearson's r and Spearman's Rho, followed by a short session on reliability . In the remainder of the session, we will explore the Chi-Square Goodness-of-Fit test and Chi-Square Test of Association for analysing categorical data. #### You'll learn: - Perform Pearson’s Correlation (r) Test - Perform Spearman’s Rho Correlation (⍴) Test - Carry out basic reliability analysis on survey items - Perform Chi-Square Goodness-of-Fit test - Perform Chi-Square Test of Association #### Prerequisites: In order to participate, attendees must have a licensed copy of SPSS installed on their computer. Speak to your local university IT or Research Office for assistance in obtaining a license and installing the software. This workshop is recommended for researchers and postgraduate students who have previously attended the Intersect’s [Data Entry and Processing in SPSS](https://intersect.org.au/training/course/spss101/) workshop. **For more information, please click [here](https://intersect.org.au/training/course/spss102).** training@intersect.org.au Data Analysis, SPSS
Data Visualisation in R

R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.

In this workshop, you will explore different types of graphs and learn how to...

Keywords: Programming, R

Data Visualisation in R https://dresa.org.au/materials/data-visualisation-in-r R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. In this workshop, you will explore different types of graphs and learn how to customise them using one of the most popular plotting packages in R, ggplot2 (Data Visualisation). We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from Intersect and the highly regarded Software Carpentry Foundation. #### You'll learn: - Using the Grammar of Graphics to convert data into figures using the ggplot2 package - Configuring plot elements within ggplot2 - Exploring different types of plots using ggplot2 #### Prerequisites: Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) courses to ensure that you are familiar with the knowledge needed for this course. We also strongly recommend attending the [Data Manipulation in R](https://intersect.org.au/training/course/r201/) course. **For more information, please click [here](https://intersect.org.au/training/course/r202).** training@intersect.org.au Programming, R
Data Manipulation and Visualisation in R

R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.

In this workshop, you will learn how to manipulate, explore and get insights from...

Keywords: Programming, R

Data Manipulation and Visualisation in R https://dresa.org.au/materials/data-manipulation-and-visualisation-in-r R is quickly gaining popularity as a programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. In this workshop, you will learn how to manipulate, explore and get insights from your data (Data Manipulation using the dplyr package), as well as how to convert your data from one format to another (Data Transformation using the tidyr package). You will also explore different types of graphs and learn how to customise them using one of the most popular plotting packages in R, ggplot2 (Data Visualisation). We teach using RStudio, which allows program code, results, visualisations and documentation to be blended seamlessly. Join us for a live coding workshop where we write programs that produce results, using the researcher-focused training modules from Intersect and the highly regarded Software Carpentry Foundation. #### You'll learn: - DataFrame Manipulation using the dplyr package - DataFrame Transformation using the tidyr package - Using the Grammar of Graphics to convert data into figures using the ggplot2 package - Configuring plot elements within ggplot2 - Exploring different types of plots using ggplot2 #### Prerequisites: Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) needed to attend this course. If you already have experience with programming, please check the topics covered in the [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [R for Research](https://intersect.org.au/training/course/r110/) courses to ensure that you are familiar with the knowledge needed for this course. **For more information, please click [here](https://intersect.org.au/training/course/r203).** training@intersect.org.au Programming, R
Introduction to Machine Learning using R: Introduction & Linear Regression

Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore...

Keywords: Programming, R

Introduction to Machine Learning using R: Introduction & Linear Regression https://dresa.org.au/materials/introduction-to-machine-learning-using-r-introduction-linear-regression Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Understand the difference between supervised and unsupervised Machine Learning. - Understand the fundamentals of Machine Learning. - Comprehensive introduction to Machine Learning models and techniques such as Linear Regression and Model Training. - Understand the Machine Learning modelling workflows. - Use R and and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts and familiarity with dplyr, tidyr and ggplot2 packages. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r205).** training@intersect.org.au Programming, R
Introduction to Machine Learning using R: Classification

Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore...

Keywords: Programming, R

Introduction to Machine Learning using R: Classification https://dresa.org.au/materials/introduction-to-machine-learning-using-r-classification Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Logistic Regression, Decision Trees and Ensemble Learning. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r206).** training@intersect.org.au Programming, R
Introduction to Machine Learning using R: SVM & Unsupervised Learning

Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore...

Keywords: Programming, R

Introduction to Machine Learning using R: SVM & Unsupervised Learning https://dresa.org.au/materials/introduction-to-machine-learning-using-r-svm-unsupervised-learning Machine Learning (ML) is a new way to program computers to solve real world problems. It has gained popularity over the last few years by achieving tremendous success in tasks that we believed only humans could solve, from recognising images to self-driving cars. In this course, we will explore the fundamentals of Machine Learning from a practical perspective with the help of the R programming language and its scientific computing packages. #### You'll learn: - Comprehensive introduction to Machine Learning models and techniques such as Support Vector Machine, K-Nearest Neighbor and Dimensionality Reduction. - Know the differences between various core Machine Learning models. - Understand the Machine Learning modelling workflows. - Use R and its relevant packages to process real datasets, train and apply Machine Learning models #### Prerequisites: - Either [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation in R](https://intersect.org.au/training/course/r201/) or [Learn to Program: R](https://intersect.org.au/training/course/r101/) and [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/)needed to attend this course. If you already have experience with programming, please check the topics covered in the courses above and [Introduction to ML using R: Introduction & Linear Regression](https://intersect.org.au/training/course/r205/) to ensure that you are familiar with the knowledge needed for this course, such as good understanding of R syntax and basic programming concepts, familiarity with dplyr, tidyr and ggplot2 packages, and basic understanding of Machine Learning and Model Training. - Maths knowledge is not required. There are only a few Math formula that you are going to see in this course, however references to Mathematics required for learning about Machine Learning will be provided. Having an understanding of the Mathematics behind each Machine Learning algorithms is going to make you appreciate the behaviour of the model and know its pros/cons when using them. #### Why do this course: - Useful for anyone who wants to learn about Machine Learning but are overwhelmed with the tremendous amount of resources. - It does not go in depth into mathematical concepts and formula, however formal intuitions and references are provided to guide the participants for further learning. - We do have applications on real datasets! - Machine Learning models are introduced in this course together with important feature engineering techniques that are guaranteed to be useful in your own projects. - Give you enough background to kickstart your own Machine Learning journey, or transition yourself into Deep Learning. For a better and more complete understanding of the most popular Machine Learning models and techniques please consider attending all three Introduction to Machine Learning using R workshops: - Introduction to Machine Learning using R: Introduction & Linear Regression - Introduction to Machine Learning using R: Classification - Introduction to Machine Learning using R: SVM & Unsupervised Learning **For more information, please click [here](https://intersect.org.au/training/course/r207).** training@intersect.org.au Programming, R
Exploring Chi-square and correlation in R

This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures...

Keywords: Programming, R

Exploring Chi-square and correlation in R https://dresa.org.au/materials/exploring-chi-square-and-correlation-in-r This hands-on training is designed to familiarise you with the data analysis environment of the R programming. In this session, we will traverse into the realm of inferential statistics, beginning with correlation and reliability. We will present a brief conceptual overview and the R procedures for computing reliability and correlation (Pearson's r, Spearman's Rho and Kendall’s tau) in real world datasets. #### You'll learn: - Obtain inferential statistics and assess data normality - Manipulate data and create graphs - Perform Chi-Square tests (Goodness of Fit test and Test of Independence) - Perform correlations on continuous and categorical data (Pearson’s r, Spearman’s Rho and Kendall’s tau) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts, as well as familiarity with data manipulation (dplyr) and visualisation (ggplot2 package). Please consider attending Intersect’s following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r210).** training@intersect.org.au Programming, R
Traversing t tests in R

R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework.

The primary goal of this workshop is to familiarise you with basic statistical concepts in R from...

Keywords: Programming, R

Traversing t tests in R https://dresa.org.au/materials/traversing-t-tests-in-r R has become a popular programming language for statisticians, data scientists and researchers. It has an excellent ecosystem including the powerful RStudio and the Shiny web application framework. The primary goal of this workshop is to familiarise you with basic statistical concepts in R from reading in and manipulating data, checking assumptions, statistical tests and visualisations. This is not an advanced statistics course, but is instead designed to gently introduce you to statistical comparisons and hypothesis testing in R. #### You'll learn: - Read in and manipulate data - Check assumptions of t tests - Perform one-sample t tests - Perform two-sample t tests (Independent-samples, Paired-samples) - Perform nonparametric t tests (One-sample Wilcoxon Signed Rank test, Independent-samples Mann-Whitney U test) #### Prerequisites: This course assumes familiarity with R and RStudio. You should have a good understanding of R syntax and basic programming concepts. Please consider attending Intersect's following courses to get up to speed: [Learn to Program: R](https://intersect.org.au/training/course/r101/), [Data Manipulation and Visualisation in R](https://intersect.org.au/training/course/r203/) **For more information, please click [here](https://intersect.org.au/training/course/r211).** training@intersect.org.au Programming, R