Register training material
2 materials found

Difficulty level: Intermediate 

and

Licence: cc-by-4.0 

and

Status: active 

and

Target audience: masters 


EcoCommons & Open EcoAcoustics SDM use case

  1. Examples of code and the associated text summaries describe how open ecoacoustics https://openecoacoustics.org/ data can generate better SDM predictions. By using long-term monitoring data from https://acousticobservatory.org/ which allows analysts to infer absence locations, which does a much...

Keywords: Species Distribution Modelling, Ecoacoustics, Ecology, Owls, Mapping uncertainty

EcoCommons & Open EcoAcoustics SDM use case https://dresa.org.au/materials/ecocommons-open-ecoacoustics-sdm-use-case 1. Examples of code and the associated text summaries describe how open ecoacoustics https://openecoacoustics.org/ data can generate better SDM predictions. By using long-term monitoring data from https://acousticobservatory.org/ which allows analysts to infer absence locations, which does a much better job at predicting distributions than presence only methods, and which facilitate use of call frequency as a response variable rather than presence absence. The code and data used to generate these examples: https://github.com/andrew-1234/sdm-usecase-master 2. Shows one way to overlay areas with the least geographically and environmentally representative sampling in addition to the predicted probability of occurrence generated by an SDM. This shows how to spatially represent areas where additional acoustic sampling would increase representative sampling most. The code used in this example: https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts/adding_uncertainty_to_the_map https://www.ecocommons.org.au/contact/ Species Distribution Modelling, Ecoacoustics, Ecology, Owls, Mapping uncertainty ugrad masters mbr phd
EcoCommons Marine use case

This is a toy example with many of the steps required for a robust example not included. This does show how to pull together marine data from IMOS / AODN and summarise those environmental predictors and occurrence data by month. Then we show how you can pull together one model with predictors...

Keywords: Species Distribution Modelling, SDM temporal predictions, Ecology, Marine seasonal distributions, R statistical software

EcoCommons Marine use case https://dresa.org.au/materials/ecocommons-marine-use-case This is a toy example with many of the steps required for a robust example not included. This does show how to pull together marine data from IMOS / AODN and summarise those environmental predictors and occurrence data by month. Then we show how you can pull together one model with predictors that are both temporally (monthly) and spatially (Australian waters) explicit. Again, a robust example would need calibration and validation steps, but this example does show how SDMs can be developed across time. The data and code needed to run these examples is here: https://github.com/EcoCommons-Australia/educational_material/tree/main/Marine_use_case https://www.ecocommons.org.au/contact/ Species Distribution Modelling, SDM temporal predictions, Ecology, Marine seasonal distributions, R statistical software ugrad masters mbr phd ecr