Register training material
4 materials found

Difficulty level: Beginner 

and

Keywords: AI  or Machine learning  or Unix 


Introduction to Unix

A hands-on workshop covering the basics of the Unix command line interface.

Knowledge of the Unix operating system is fundamental to the use of many popular bioinformatics command-line tools. Whether you choose to run your analyses locally or on a high-performance computing system, knowing...

Keywords: Unix, Command line, Command-line, CLI

Resource type: tutorial

Introduction to Unix https://dresa.org.au/materials/introduction-to-unix A hands-on workshop covering the basics of the Unix command line interface. Knowledge of the Unix operating system is fundamental to the use of many popular bioinformatics command-line tools. Whether you choose to run your analyses locally or on a high-performance computing system, knowing your way around a command-line interface is highly valuable. This workshop will introduce you to Unix concepts by way of a series of hands-on exercises. This workshop is designed for participants with little or no command-line knowledge. Tools: Standard Unix commands, FileZilla Topic overview: Section 1: Getting started Section 2: Exploring your current directory Section 3: Making and changing directories Section 4: Viewing and manipulating files Section 5: Removing files and directories Section 6: Searching files Section 7: Putting it all together Section 8: Transferring files Tutorial instructions available here: https://www.melbournebioinformatics.org.au/tutorials/tutorials/unix/unix/ For queries relating to this workshop, contact Melbourne Bioinformatics (bioinformatics-training@unimelb.edu.au). Find out when we are next running this training as an in-person workshop, by visiting the Melbourne Bioinformaitcs Eventbrite page: https://www.eventbrite.com.au/o/melbourne-bioinformatics-13058846490 For queries relating to this workshop, contact Melbourne Bioinformatics (bioinformatics-training@unimelb.edu.au). Unix, Command line, Command-line, CLI ugrad masters mbr phd ecr researcher support professional
Basic Linux/Unix commands

A series of eight videos (each between 5 and 10 minutes long) following the content of the Software Carpentry workshop "The Unix Shell".

Sessions 1, 2 and 3 provide instructions on the minimal level of Linux/Unix commands recommended for new...

Keywords: HPC, high performance computer, Unix, Linux, Software Carpentry

Resource type: video, guide

Basic Linux/Unix commands https://dresa.org.au/materials/basic-linux-unix-commands A series of eight videos (each between 5 and 10 minutes long) following the content of the Software Carpentry workshop ["The Unix Shell"](https://swcarpentry.github.io/shell-novice/). Sessions 1, 2 and 3 provide instructions on the minimal level of Linux/Unix commands recommended for new users of HPC. 1 – An overview of how to find out where a user is in the filesystem, list the files there, and how to get help on Unix commands 2 – How to move around the file system and change into other directories 3 – Explains the difference between an absolute and relative path 4 – Overview of how to create new directories, and to create and edit new files with nano 5 – How to use the vi editor to edit files 6 – Overview of file viewers available 7 – How to copy and move files and directories 8 – How to remove files and directories Further details and exercises with solutions can be found on the Software Carpentry "The Unix Shell" page (https://swcarpentry.github.io/shell-novice/) QCIF Training (training@qcif.edu.au) HPC, high performance computer, Unix, Linux, Software Carpentry
Deep Learning for Natural Language Processing

This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for...

Keywords: Deep learning, NLP, Machine learning

Resource type: presentation, tutorial

Deep Learning for Natural Language Processing https://dresa.org.au/materials/deep-learning-for-natural-language-processing This workshop is designed to be instructor led and consists of two parts. Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset. Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for attendees to train their own RNN. The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop introduces natural language as data for deep learning. We discuss various techniques and software packages (e.g. python strings, RegEx, NLTK, Word2Vec) that help us convert, clean, and formalise text data “in the wild” for use in a deep learning model. We then explore the training and testing of a Recurrent Neural Network on the data to complete a real world task. We will be using TensorFlow v2 for this purpose. datascienceplatform@monash.edu Deep learning, NLP, Machine learning
Introduction to Deep Learning and TensorFlow

This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain...

Keywords: Deep learning, convolutional neural network, tensorflow, Machine learning

Resource type: presentation, tutorial

Introduction to Deep Learning and TensorFlow https://dresa.org.au/materials/introduction-to-deep-learning-and-tensorflow This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise. Part 1 - Introduction to Deep Learning and TensorFlow Part 2 - Introduction to Convolutional Neural Networks The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop is an introduction to how deep learning works and how you could create a neural network using TensorFlow v2. We start by learning the basics of deep learning including what a neural network is, how information passes through the network, and how the network learns from data through the automated process of gradient descent. Workshop attendees would build, train and evaluate a neural network using a cloud GPU (Google Colab). In part 2, we look at image data and how we could train a convolution neural network to classify images. Workshop attendees will extend their knowledge from the first part to design, train and evaluate this convolutional neural network. datascienceplatform@monash.edu Deep learning, convolutional neural network, tensorflow, Machine learning