Register training material
5 materials found

Status: active 

and

Difficulty level: Intermediate  or Advanced 


EcoCommons & Open EcoAcoustics SDM use case

  1. Examples of code and the associated text summaries describe how open ecoacoustics https://openecoacoustics.org/ data can generate better SDM predictions. By using long-term monitoring data from https://acousticobservatory.org/ which allows analysts to infer absence locations, which does a much...

Keywords: Species Distribution Modelling, Ecoacoustics, Ecology, Owls, Mapping uncertainty

EcoCommons & Open EcoAcoustics SDM use case https://dresa.org.au/materials/ecocommons-open-ecoacoustics-sdm-use-case 1. Examples of code and the associated text summaries describe how open ecoacoustics https://openecoacoustics.org/ data can generate better SDM predictions. By using long-term monitoring data from https://acousticobservatory.org/ which allows analysts to infer absence locations, which does a much better job at predicting distributions than presence only methods, and which facilitate use of call frequency as a response variable rather than presence absence. The code and data used to generate these examples: https://github.com/andrew-1234/sdm-usecase-master 2. Shows one way to overlay areas with the least geographically and environmentally representative sampling in addition to the predicted probability of occurrence generated by an SDM. This shows how to spatially represent areas where additional acoustic sampling would increase representative sampling most. The code used in this example: https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts/adding_uncertainty_to_the_map https://www.ecocommons.org.au/contact/ Species Distribution Modelling, Ecoacoustics, Ecology, Owls, Mapping uncertainty ugrad masters mbr phd
EcoCommons Marine use case

This is a toy example with many of the steps required for a robust example not included. This does show how to pull together marine data from IMOS / AODN and summarise those environmental predictors and occurrence data by month. Then we show how you can pull together one model with predictors...

Keywords: Species Distribution Modelling, SDM temporal predictions, Ecology, Marine seasonal distributions, R statistical software

EcoCommons Marine use case https://dresa.org.au/materials/ecocommons-marine-use-case This is a toy example with many of the steps required for a robust example not included. This does show how to pull together marine data from IMOS / AODN and summarise those environmental predictors and occurrence data by month. Then we show how you can pull together one model with predictors that are both temporally (monthly) and spatially (Australian waters) explicit. Again, a robust example would need calibration and validation steps, but this example does show how SDMs can be developed across time. The data and code needed to run these examples is here: https://github.com/EcoCommons-Australia/educational_material/tree/main/Marine_use_case https://www.ecocommons.org.au/contact/ Species Distribution Modelling, SDM temporal predictions, Ecology, Marine seasonal distributions, R statistical software ugrad masters mbr phd ecr
Species Distribution Modelling in R

This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools.

Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting...

Keywords: Species Distribution Modelling, Ecology, R software, EcoCommons

Species Distribution Modelling in R https://dresa.org.au/materials/species-distribution-modelling-in-r This set of scripts and videos provide an introduction to running SDMs in R and include some steps to consider that go beyond what's available in the EcoCommons SDM point-and-click tools. Five videos include: 1. An introduction to SDM in R, 2. occurrence data, 3. environmental data, 4. fitting your model, 5. model evaluation Scripts and files are available here: https://github.com/EcoCommons-Australia/educational_material/tree/main/SDMs_in_R/Scripts Scripts for all four modules are here: https://www.ecocommons.org.au/wp-content/uploads/EcoCommons_steps_1_to_4.html https://www.ecocommons.org.au/contact/ Species Distribution Modelling, Ecology, R software, EcoCommons ugrad mbr phd
VOSON Lab Code Blog

The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages.

Keywords: visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics

Resource type: tutorial, other

VOSON Lab Code Blog https://dresa.org.au/materials/voson-lab-code-blog The VOSON Lab Code Blog is a space to share methods, tips, examples and code. Blog posts provide techniques to construct and analyse networks from various API and other online data sources, using the VOSON open-source software and other R based packages. robert.ackland@anu.edu.au visualisation, Data analysis, data collections, R software, Social network analysis, social media data, Computational Social Science, quantitative, Text Analytics researcher support phd masters
Semi-Supervised Deep Learning

Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled...

Keywords: Deep learning, Machine learning, semi-supervised

Resource type: presentation, tutorial

Semi-Supervised Deep Learning https://dresa.org.au/materials/semi-supervised-deep-learning Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled data. If successful, it allows better training of a model despite the limited amount of labelled data available. This workshop is designed to be instructor led and covers various semi-supervised learning techniques available in the literature. The workshop consists of a lecture introducing at a high level a selection of techniques that are suitable for semi-supervised deep learning. We discuss how these techniques can be implemented and the underlying assumptions they require. The lecture is followed by a hands-on session where attendees implement a semi-supervised learning technique to train a neural network. We observe and discuss the changing performance and behaviour of the network as varying degrees of labelled and unlabelled data is provided to the network during training. datascienceplatform@monash.edu Deep learning, Machine learning, semi-supervised