WEBINAR: Getting started with R
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not...
Keywords: R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WEBINAR: Getting started with R
https://zenodo.org/records/5214277
https://dresa.org.au/materials/webinar-getting-started-with-r-1c8f2b21-bc4b-4b42-9a5d-d6096a2afbe6
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not always the best choice, particularly for large and complex datasets.
R is an open-source software and programming language that enables data exploration, statistical analysis visualisation and more. While it is the tool of choice for data analysis, getting started can be a little daunting for those without a background in statistics.
In this webinar Saskia Freytag, an R user with over a decade of experience and member of the Bioconductor Community Advisory Board, will walk you through their hints and tips for getting started with R and data analysis. She’ll cover topics like R Studio and why you need it, where to get help, basic data manipulation, visualisations and extending R with libraries. The webinar will be followed by a short Q&A session
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting started with R - slides (PDF): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/JS7yZw7bnX8
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WEBINAR: Getting started with deep learning
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.
Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep...
Keywords: Deep learning, Neural networks, Machine learning
WEBINAR: Getting started with deep learning
https://zenodo.org/records/5121004
https://dresa.org.au/materials/webinar-getting-started-with-deep-learning-986aa2d2-594a-4a7f-836c-44d6e9d5d017
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.
Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning.
The webinar is followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/I1TmpnZUuiQ
Melissa Burke (melissa@biocommons.org.au)
Tang, Titus (orcid: 0000-0001-7496-1152)
Deep learning, Neural networks, Machine learning
WEBINAR: AlphaFold: what's in it for me?
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the...
Keywords: Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
WEBINAR: AlphaFold: what's in it for me?
https://zenodo.org/records/7865494
https://dresa.org.au/materials/webinar-alphafold-what-s-in-it-for-me-4d1ea222-4240-4b68-b9ae-7769ac664ee0
This record includes training materials associated with the Australian BioCommons webinar ‘WEBINAR: AlphaFold: what’s in it for me?’. This webinar took place on 18 April 2023.
Event description
AlphaFold has taken the scientific world by storm with the ability to accurately predict the structure of any protein in minutes using artificial intelligence (AI). From drug discovery to enzymes that degrade plastics, this promises to speed up and fundamentally change the way that protein structures are used in biological research.
Beyond the hype, what does this mean for structural biology as a field (and as a career)?
Dr Craig Morton, Drug Discovery Lead at the CSIRO, is an early adopter of AlphaFold and has decades of expertise in protein structure / function, protein modelling, protein – ligand interactions and computational small molecule drug discovery, with particular interest in anti-infective agents for the treatment of bacterial and viral diseases.
Craig joins this webinar to share his perspective on the implications of AlphaFold for science and structural biology. He will give an overview of how AlphaFold works, ways to access AlphaFold, and some examples of how it can be used for protein structure/function analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/4ytn2_AiH8s
Melissa Burke (melissa@biocommons.org.au)
Morton, Craig (orcid: 0000-0001-5452-5193)
Bioinformatics, Machine Learning, Structural Biology, Proteins, Drug discovery, AlphaFold, AI, Artificial Intelligence, Deep learning
Accelerating skills development in Data science and AI at scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...
Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Accelerating skills development in Data science and AI at scale
https://zenodo.org/records/4287746
https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally.
The talk will also cover our approach as outlined below
• Combined survey of gaps in skills and trainings for Data science and AI
• Provide seats to partners
• Share associate instructors/helpers/volunteers
• Develop combined training materials
• Publish a repository of open source trainings
• Train the trainer activities
• Establish a network of volunteers to deliver trainings at their local regions
Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community.
Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together.
contact@ardc.edu.au
Tang, Titus
AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...
Keywords: data skills, training partnerships, data science, AI, training material
Monash University - University of Queensland training partnership in Data science and AI
https://zenodo.org/records/4287864
https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers.
contact@ardc.edu.au
Tang, Titus
data skills, training partnerships, data science, AI, training material
Exploratory Data Analysis
This is the second of three modules in our exciting new machine learning workshop series by the Sydney Informatics Hub (SIH).
Module 1: https://youtu.be/dMwHFhKWRRI
Module 3:...
Keywords: Data analysis, training material
Exploratory Data Analysis
https://youtu.be/HVAFflj2PS0
https://dresa.org.au/materials/exploratory-data-analysis
This is the second of three modules in our exciting new machine learning workshop series by the Sydney Informatics Hub (SIH).
**Module 1**: [https://youtu.be/dMwHFhKWRRI](https://youtu.be/dMwHFhKWRRI)
**Module 3**: [https://github.com/Sydney-Informatics-Hub/Module3R](https://github.com/Sydney-Informatics-Hub/Module3R)
*The Sydney Informatics Hub is a Core Research Facility at The University of Sydney, enabling excellence in research* [https://sydney.edu.au/informatics-hub](https://sydney.edu.au/informatics-hub)
sih.training@sydney.edu.au
Zhang, Eden (orcid: 0000-0003-0294-3734)
Mori, Giorgia (orcid: 0000-0003-3469-5632)
Data analysis, training material
National Transfusion Dataset Secure eResearch Platform (SeRP)/SafeHaven Training
A short training video for NTD users on how to access and use the SeRP once data access is granted.
Keywords: research data, Data analysis, research data management
National Transfusion Dataset Secure eResearch Platform (SeRP)/SafeHaven Training
https://www.transfusiondataset.com/training-and-user-guides
https://dresa.org.au/materials/national-transfusion-dataset-secure-eresearch-platform-serp-safehaven-training
A short training video for NTD users on how to access and use the SeRP once data access is granted.
sphpm.ntd@monash.edu
research data, Data analysis, research data management
Introduction to Data Cleaning with OpenRefine
Learn basic data cleaning techniques in this self-paced online workshop using open data from data.qld.gov.au and open source tool OpenRefine openrefine.org. Learn techniques to prepare messy tabular data for comupational analysis. Of most relevance to HASS disciplines, working with textual data...
Keywords: data skills, Data analysis
Resource type: tutorial
Introduction to Data Cleaning with OpenRefine
https://griffithunilibrary.github.io/data-cleaning-intro/
https://dresa.org.au/materials/introduction-to-data-cleaning-with-openrefine
Learn basic data cleaning techniques in this self-paced online workshop using open data from data.qld.gov.au and open source tool OpenRefine openrefine.org. Learn techniques to prepare messy tabular data for comupational analysis. Of most relevance to HASS disciplines, working with textual data in a structured or semi-structured format.
s.stapleton@griffith.edu.au;
Sharron Stapleton
data skills, Data analysis
mbr
phd
ecr
researcher
support
professional
Deep Learning for Natural Language Processing
This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for...
Keywords: Deep learning, NLP, Machine learning
Resource type: presentation, tutorial
Deep Learning for Natural Language Processing
https://doi.org/10.26180/13100513
https://dresa.org.au/materials/deep-learning-for-natural-language-processing
This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for attendees to train their own RNN.
The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises.
This workshop introduces natural language as data for deep learning. We discuss various techniques and software packages (e.g. python strings, RegEx, NLTK, Word2Vec) that help us convert, clean, and formalise text data “in the wild” for use in a deep learning model. We then explore the training and testing of a Recurrent Neural Network on the data to complete a real world task. We will be using TensorFlow v2 for this purpose.
datascienceplatform@monash.edu
Titus Tang
Deep learning, NLP, Machine learning
Introduction to Deep Learning and TensorFlow
This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain...
Keywords: Deep learning, convolutional neural network, tensorflow, Machine learning
Resource type: presentation, tutorial
Introduction to Deep Learning and TensorFlow
https://doi.org/10.26180/13100519
https://dresa.org.au/materials/introduction-to-deep-learning-and-tensorflow
This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises.
This workshop is an introduction to how deep learning works and how you could create a neural network using TensorFlow v2. We start by learning the basics of deep learning including what a neural network is, how information passes through the network, and how the network learns from data through the automated process of gradient descent. Workshop attendees would build, train and evaluate a neural network using a cloud GPU (Google Colab).
In part 2, we look at image data and how we could train a convolution neural network to classify images. Workshop attendees will extend their knowledge from the first part to design, train and evaluate this convolutional neural network.
datascienceplatform@monash.edu
Titus Tang
Deep learning, convolutional neural network, tensorflow, Machine learning
Galaxy Training
Galaxy is a hosted web-accessible platform that lets you conduct accessible, reproducible, and transparent computational biological research. It is an international, community driven effort to make it easy for life scientists to analyse their data for free and without the need for programmatic...
Keywords: Galaxy Australia, Galaxy Project, Bioinformatics, Data analysis
Galaxy Training
https://training.galaxyproject.org/training-material/
https://dresa.org.au/materials/galaxy-training
Galaxy is a hosted web-accessible platform that lets you conduct accessible, reproducible, and transparent computational biological research. It is an international, community driven effort to make it easy for life scientists to analyse their data for free and without the need for programmatic skills.
This is a collection of tutorials developed and maintained by the worldwide Galaxy community that show you how to analyse a variety of biological data using Galaxy.
Melissa (melissa@biocommons.org.au)
Galaxy Australia, Galaxy Project, Bioinformatics, Data analysis