ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components
The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging...
Keywords: training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure
ARDC Digital Research Capabilities and Skills Framework: The Framework and Its Components
https://zenodo.org/records/14188836
https://dresa.org.au/materials/ardc-digital-research-capabilities-and-skills-framework-the-framework-and-its-components
The ARDC's Digital Research Capabilities and Skills Framework, released in 2022, provides a structure for training programs to develop essential and advanced digital research skills. It aims to help researchers and professionals identify the necessary skills they need to leverage emerging opportunities in data management, data analysis, data linking, AI, and machine learning. The framework aligns with technological advancements and encourages ongoing discussion and contributions to evolve the coverage of digital research skills.
The framework focuses on digital research skills, excluding broader professional skills, and is intended for a wide range of stakeholders. It provides a structured approach for project teams and organisations to develop and enhance their digital research skills through six main components: a skills taxonomy, a skills glossary, a list of generalised roles, roles and skills-related profiles, learning paths, and a skills and roles matrix. The skills taxonomy classifies digital research skills into four capability families: Governance, Data, Software, and Digital Research Infrastructure Management. It provides a standard terminology for identifying and describing these skills.
contact@ardc.edu.au
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
Russell, Keith (type: Editor)
Wong, Adeline (type: Editor)
Lyrtzis, Ellen (type: Editor)
training material, skills framework, ARDC skills framework, ARDC capabilities framework, national skills framework, learning path, role profile, capabilities, FAIR implementation, skills, data management, research software, data governance, digital research infrastructure
Research Data Governance
This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders.
If you want to share...
Keywords: data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material
Research Data Governance
https://zenodo.org/records/5044585
https://dresa.org.au/materials/research-data-governance-6ad9ab90-1a29-41db-b4aa-f1988501530d
This video contains key information for those who make research data-related decisions. It will help project leaders to start investigating ways to develop their own data governance policy, roles and responsibilities and procedures with the input of appropriate stakeholders.
If you want to share the video please use this:
Australian Research Data Commons, 2021. Research Data Governance. [video] Available at: https://youtu.be/K_xVQRdgCIc DOI: http://doi.org/10.5281/zenodo.5044585 [Accessed dd Month YYYY].
contact@ardc.edu.au
Australian Research Data Commons
Martinez, Paula Andrea (type: ProjectLeader)
Wilkinson, Max (type: Editor)
Callaghan,Shannon (type: Editor)
Savill, Jo (type: Editor)
Kang, Kristan (type: Editor)
Levett, Kerry (type: Editor)
Russell, Keith (type: Editor)
Simons, Natasha (type: Editor)
data governance, data, research, FAIR, data management, authority, share, reuse, access, provenance, policy, responsibilities, ARDC_AU, training material
ARDC Your first step to FAIR
This workshop gives a brief overview of the FAIR principles, including a method to make a one-file dataset FAIR.
Keywords: training material, FAIR, data, workshop
ARDC Your first step to FAIR
https://zenodo.org/records/5009206
https://dresa.org.au/materials/ardc-your-first-step-to-fair-1ee3dc3c-23b0-4287-b96c-c120c5697932
This workshop gives a brief overview of the FAIR principles, including a method to make a one-file dataset FAIR.
contact@ardc.edu.au
Matthias Liffers (orcid: 0000-0002-3639-2080)
Stokes, Liz (type: Editor)
Martinez, Paula Andrea (type: Editor)
Russell, Keith (type: Editor)
training material, FAIR, data, workshop
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support