Fluoroquinolone antibiotics and Aortic Aneurysm or Dissection
The main objective of this project was to provide education on the use of data translated to the OMOP common data model. We aimed to showcase how the Atlas interface tool could be used to generate evidence for a highly relevant and significant research question. The clinical question that was...
Keywords: OMOP, Aortic Aneurysm, Fluoroquinolone antibiotics
Fluoroquinolone antibiotics and Aortic Aneurysm or Dissection
https://ohdsi-australia.org/full_tutorial.pdf
https://dresa.org.au/materials/fluoroquinolone-antibiotics-and-aortic-aneurysm-or-dissection
The main objective of this project was to provide education on the use of data translated to the OMOP common data model. We aimed to showcase how the Atlas interface tool could be used to generate evidence for a highly relevant and significant research question. The clinical question that was used to demonstrate the process revolved around investigating the potential association between the use of fluoroquinolones to treat urinary tract infection and the risk of experiencing aortic aneurysm and dissection within 30 days, 3 months, or 12 months of treatment initiation compared to other commonly used antibiotics. The workshop aimed to describe how data are translated to the OMOP CDM, how cohorts can be derived in these data, how to execute a robust analysis, and lastly, how to interpret the results of the study. Specifically, we described the process of translating Australian medicines dispensing data to the OMOP CDM, including the translation of the Australia Pharmaceutical Benefits Schedule data to the international RxNorm standard vocabulary.
The outcome of the project is an on-line training resource that highlights the process of study execution from start to finish. This training package will serve as an exemplar for researchers in Australia to unlock the value of their data that has been translated into the OMOP CDM. The audience for this project was database programmers, researchers, and decision-makers, and all those interested in using data to inform healthcare.
Roger Ward, Nicole Pratt
Roger Ward
Nicole Pratt
Christine Hallinan
OMOP, Aortic Aneurysm, Fluoroquinolone antibiotics
OpenCL
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC...
Keywords: supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs
Resource type: activity
OpenCL
https://www.youtube.com/playlist?list=PLmu61dgAX-aa_lk5fby5PjuS49snHpyYL
https://dresa.org.au/materials/opencl
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC infrastructure.
training@pawsey.org.au
Toby Potter
Pawsey Supercomputing Research Centre
Pelagos
Toby Potter
supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs
masters
ecr
researcher
support