Accelerating skills development in Data science and AI at scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...
Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Accelerating skills development in Data science and AI at scale
https://zenodo.org/records/4287746
https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale-2d8a65fa-f96e-44ad-a026-cfae3f38d128
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally.
The talk will also cover our approach as outlined below
• Combined survey of gaps in skills and trainings for Data science and AI
• Provide seats to partners
• Share associate instructors/helpers/volunteers
• Develop combined training materials
• Publish a repository of open source trainings
• Train the trainer activities
• Establish a network of volunteers to deliver trainings at their local regions
Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community.
Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together.
contact@ardc.edu.au
Tang, Titus
AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a...
Keywords: Small satellites, metadata, vocabularies, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
https://zenodo.org/records/5832057
https://dresa.org.au/materials/metasat-an-open-collaboratively-developed-metadata-toolkit-to-support-the-future-of-space-exploration-49af7d4d-f0d1-4f95-9fbe-afbd45170a6a
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a longstanding need for a vocabulary to span these community standards. A vocabulary to annotate the data and information outputs of these satellite missions, to enable search across disparate data repositories, and provide support for application of analytical services to retrieved datasets.
A common problem among small satellite teams is finding information about how other small satellites were put together, what parts worked well, what weren't compatible, what were the mission goals and outcomes. A lot of this information can be found, but it's not usually described in a consistent and searchable way across projects. MetaSat helps by building a uniform language of description which can be embedded into small satellite databases and tools to connect information across projects.
Although a relatively new vocabulary initiative, MetaSat has secured early adoption by SatNOGS, a global network of ground stations that collects, manages & enables access to satellite observations. Also partnering with NASA's Small Satellite Reliability Initiative, and in discussion with NASA concerning implementation of the vocabulary in other areas of its information infrastructure.
You can watch the full presentation on YouTube here: https://www.youtube.com/watch?v=uaCOzNL1eh4
contact@ardc.edu.au
Bouquin, Daina (orcid: 0000-0003-2626-3688)
Chivvis, Daniel (orcid: 0000-0001-6656-160X)
Small satellites, metadata, vocabularies, training material
ARDC Training Materials Metadata Checklist v1.1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
Keywords: checklist, Training material, FAIR, standard, requirements, metadata
ARDC Training Materials Metadata Checklist v1.1
https://zenodo.org/records/5276003
https://dresa.org.au/materials/ardc-training-materials-metadata-checklist-v1-1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
checklist, Training material, FAIR, standard, requirements, metadata
Monash University - University of Queensland training partnership in Data science and AI
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...
Keywords: data skills, training partnerships, data science, AI, training material
Monash University - University of Queensland training partnership in Data science and AI
https://zenodo.org/records/4287864
https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai-8082bf73-d20f-4214-ad8c-95123e25a36c
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers.
contact@ardc.edu.au
Tang, Titus
data skills, training partnerships, data science, AI, training material
Why am I being asked for metadata about my research data?
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project...
Keywords: metadata, research data, data collections, data citation, data retention project, training material
Why am I being asked for metadata about my research data?
https://zenodo.org/records/5778322
https://dresa.org.au/materials/why-am-i-being-asked-for-metadata-about-my-research-data-03b1895a-44bf-4961-a0a3-bd4770297236
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project https://ardc.edu.au/collaborations/strategic-activities/data-retention-project/.
It is for researchers at any institution in Australia.
contact@ardc.edu.au
Australian Research Data Commons
metadata, research data, data collections, data citation, data retention project, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a...
Keywords: Small satellites, metadata, vocabularies, training material
MetaSat. An open, collaboratively-developed metadata toolkit to support the future of space exploration.
https://zenodo.org/record/5832057
https://dresa.org.au/materials/metasat-an-open-collaboratively-developed-metadata-toolkit-to-support-the-future-of-space-exploration
MetaSat is an open metadata toolkit for describing small satellite (and even large satellite) missions in a uniform and shareable way. Optimised for small satellite missions, MetaSat fills an informatics gap. Although there have been a number of relevant metadata sets, there has been a longstanding need for a vocabulary to span these community standards. A vocabulary to annotate the data and information outputs of these satellite missions, to enable search across disparate data repositories, and provide support for application of analytical services to retrieved datasets.
A common problem among small satellite teams is finding information about how other small satellites were put together, what parts worked well, what weren't compatible, what were the mission goals and outcomes. A lot of this information can be found, but it's not usually described in a consistent and searchable way across projects. MetaSat helps by building a uniform language of description which can be embedded into small satellite databases and tools to connect information across projects.
Although a relatively new vocabulary initiative, MetaSat has secured early adoption by SatNOGS, a global network of ground stations that collects, manages & enables access to satellite observations. Also partnering with NASA's Small Satellite Reliability Initiative, and in discussion with NASA concerning implementation of the vocabulary in other areas of its information infrastructure.
You can watch the full presentation on YouTube here: https://www.youtube.com/watch?v=uaCOzNL1eh4
contact@ardc.edu.au
Bouquin, Daina (orcid: 0000-0003-2626-3688)
Chivvis, Daniel (orcid: 0000-0001-6656-160X)
Small satellites, metadata, vocabularies, training material
Why am I being asked for metadata about my research data?
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project...
Keywords: metadata, research data, data collections, data citation, data retention project, training material
Why am I being asked for metadata about my research data?
https://zenodo.org/record/5778322
https://dresa.org.au/materials/why-am-i-being-asked-for-metadata-about-my-research-data
Find out why metadata are important for your research data collection. This brochure shares the reasons why researchers should use metadata for their data collections.
This brochure was prepared for the ARDC Data Retention Project https://ardc.edu.au/collaborations/strategic-activities/data-retention-project/.
It is for researchers at any institution in Australia.
contact@ardc.edu.au
Australian Research Data Commons
metadata, research data, data collections, data citation, data retention project, training material
ARDC Datacite API Jupyter notebook
This Jupyter notebook presents a low-barrier entry to using the DataCite REST API to mint, update, publish, and deleted DOIs and their associated metadata.
It was designed specifically to not use any third-party libraries so that it can be reused in almost any Jupyter notebook environment
Code...
Keywords: jupyter, notebook, DataCite, api, python, metadata, DOI, training material
ARDC Datacite API Jupyter notebook
https://zenodo.org/record/5574653
https://dresa.org.au/materials/ardc-datacite-api-jupyter-notebook
This Jupyter notebook presents a low-barrier entry to using the DataCite REST API to mint, update, publish, and deleted DOIs and their associated metadata.
It was designed specifically to not use any third-party libraries so that it can be reused in almost any Jupyter notebook environment
Code is presented alongside human readable comments that explain the use of each component of the notebook.
contact@ardc.edu.au
Liffers, Matthias (orcid: 0000-0002-3639-2080)
jupyter, notebook, DataCite, api, python, metadata, DOI, training material
Accelerating skills development in Data science and AI at scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities...
Keywords: AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Accelerating skills development in Data science and AI at scale
https://zenodo.org/record/4287746
https://dresa.org.au/materials/accelerating-skills-development-in-data-science-and-ai-at-scale
At the Monash Data Science and AI platform, we believe that upskilling our research community and building a workforce with data science skills are key to accelerating the application of data science in research. To achieve this, we create and leverage new and existing training capabilities within and outside Monash University. In this talk, we will discuss the principles and purpose of establishing collaborative models to accelerate skills development at scale. We will talk about our approach to identifying gaps in the existing skills and training available in data science, key areas of interest as identified by the research community and various sources of training available in the marketplace. We will provide insights into the collaborations we currently have and intend to develop in the future within the university and also nationally.
The talk will also cover our approach as outlined below
• Combined survey of gaps in skills and trainings for Data science and AI
• Provide seats to partners
• Share associate instructors/helpers/volunteers
• Develop combined training materials
• Publish a repository of open source trainings
• Train the trainer activities
• Establish a network of volunteers to deliver trainings at their local regions
Industry plays a significant role in making some invaluable training available to the research community either through self learning platforms like AWS Machine Learning University or Instructor led courses like NVIDIA Deep Learning Institute. We will discuss how we leverage our partnerships with Industry to bring these trainings to our research community.
Finally, we will discuss how we map our training to the ARDC skills roadmap and how the ARDC platforms project “Environments to accelerate Machine Learning based Discovery” has enabled collaboration between Monash University and University of Queensland to develop and deliver training together.
contact@ardc.edu.au
Tang, Titus
AI, machine learning, eresearch skills, training, train the trainer, volunteer instructors, training partnerships, training material
Monash University - University of Queensland training partnership in Data science and AI
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning,...
Keywords: data skills, training partnerships, data science, AI, training material
Monash University - University of Queensland training partnership in Data science and AI
https://zenodo.org/record/4287864
https://dresa.org.au/materials/monash-university-university-of-queensland-training-partnership-in-data-science-and-ai
We describe the peer network exchange for training that has been recently created via an ARDC funded partnership between Monash University and Universities of Queensland under the umbrella of the Queensland Cyber Infrastructure Foundation (QCIF). As part of a training program in machine learning, visualisation, and computing tools, we have established a series of over 20 workshops over the year where either Monash or QCIF hosts the event for some 20-40 of their researchers and students, while some 5 places are offered to participants from the other institution. In the longer term we aim to share material developed at one institution and have trainers present it at the other. In this talk we will describe the many benefits we have found to this approach including access to a wider range of expertise in several rapidly developing fields, upskilling of trainers, faster identification of emerging training needs, and peer learning for trainers.
contact@ardc.edu.au
Tang, Titus
data skills, training partnerships, data science, AI, training material