WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset
This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.
Hybridisation plays an important role in evolution, leading to the exchange of genes...
Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Detection of and phasing of hybrid accessions in a target capture dataset
https://zenodo.org/records/5105013
https://dresa.org.au/materials/webinar-detection-of-and-phasing-of-hybrid-accessions-in-a-target-capture-dataset-51cc7740-0da1-45f1-95de-f1a47f676053
This record includes training materials associated with the Australian BioCommons webinar ‘Detection of and phasing of hybrid accessions in a target capture dataset’. This webinar took place on 10 June 2021.
Hybridisation plays an important role in evolution, leading to the exchange of genes between species and, in some cases, generate new lineages. The use of molecular methods has revealed the frequency and importance of reticulation events is higher than previously thought and this insight continues with the ongoing development of phylogenomic methods that allow novel insights into the role and extent of hybridisation. Hybrids notoriously provide challenges for the reconstruction of evolutionary relationships, as they contain conflicting genetic information from their divergent parental lineages. However, this also provides the opportunity to gain insights into the origin of hybrids (including autopolyploids).
This webinar explores some of the challenges and opportunities that occur when hybrids are included in a target capture sequence dataset. In particular, it describes the impact of hybrid accessions on sequence assembly and phylogenetic analysis and further explores how the information of the conflicting phylogenetic signal can be used to detect and resolve hybrid accessions. The webinar showcases a novel bioinformatic workflow, HybPhaser, that can be used to detect and phase hybrids in target capture datasets and will provide the theoretical background and concepts behind the workflow.
This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focuses on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Nauheimer_hybphaser_slides (PDF): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/japXwTAhA5U
Melissa Burke (melissa@biocommons.org.au)
Nauheimer, Lars (orcid: 0000-0002-2847-0966)
Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation
This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.
Multi-gene datasets used in phylogenetic...
Keywords: Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WEBINAR: Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation
https://zenodo.org/records/5104998
https://dresa.org.au/materials/webinar-conflict-in-multi-gene-datasets-why-it-happens-and-what-to-do-about-it-deep-coalescence-paralogy-and-reticulation-a6743550-b904-45e1-9635-4e481ee8f739
This record includes training materials associated with the Australian BioCommons webinar ‘Conflict in multi-gene datasets: why it happens and what to do about it - deep coalescence, paralogy and reticulation’. This webinar took place on 20 May 2021.
Multi-gene datasets used in phylogenetic analyses, such as those produced by the sequence capture or target enrichment used in the Genomics for Australian Plants: Australian Angiosperm Tree of Life project, often show discordance between individual gene trees and between gene and species trees. This webinar explores three different forms of discordance: deep coalescence, paralogy, and reticulation. In each case, it considers underlying biological processes, how discordance presents in the data, and what bioinformatic or phylogenetic approaches and tools are available to address these challenges. It covers Yang and Smith paralogy resolution and general information on options for phylogenetic analysis.
This webinar is part of a series of webinars and workshops developed by the Genomics for Australian Plants (GAP) Initiative that focused on the analysis of target capture sequence data. In addition to two public webinars, the GAP bioinformatics working group is offering training workshops in the use of newly developed and existing scripts in an integrated workflow to participants in the 2021 virtual Australasian Systematic Botany Society Conference.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schmidt-Lebuhn - paralogy lineage sorting reticulation - slides (PDF): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/1bw81q898z8
Melissa Burke (melissa@biocommons.org.au)
Schmidt-Lebuhn, Alexander (orcid: 0000-0002-7402-8941)
Phylogenetics, Bioinformatics, Phylogeny, Genomics, Target capture sequencing
WORKSHOP: Variant calling in humans, animals and plants with Galaxy
This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.
Variant calling in polyploid organisms, including humans, plants and animals, can help determine single...
Keywords: Variant calling, Genetic Variation Analysis, SNP annotation
WORKSHOP: Variant calling in humans, animals and plants with Galaxy
https://zenodo.org/records/5076668
https://dresa.org.au/materials/workshop-variant-calling-in-humans-animals-and-plants-with-galaxy-767f1816-1c06-478c-adf4-90b3b2d32a9c
This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.
Variant calling in polyploid organisms, including humans, plants and animals, can help determine single or multi-variant contributors to a phenotype. Further, sexual reproduction (as compared to asexual) combines variants in a novel manner; this can be used to determine previously unknown variant - phenotype combinations but also to track lineage and lineage associated traits (GWAS studies), that all rely on highly accurate variant calling. The ability to confidently call variants in polyploid organisms is highly dependent on the balance between the frequency of variant observations against the background of non-variant observations, and even further compounded when one considers multi-variant positions within the genome. These are some of the challenges that will be explored in the workshop.
In this online workshop we focused on the tools and workflows available for variant calling in polyploid organisms in Galaxy Australia. The workshop provided opportunities for hands-on experience using Freebayes for variant calling and SnpEff and GEMINI for variant annotation. The workshop made use of data from a case study on diagnosing a genetic disease however the tools and workflows are equally applicable to other polyploid organisms and biological questions.
Access to all of the tools covered in this workshop was via Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience.
The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop
Variant calling - humans, animals, plants - slides (PPTX and PDF): slides used in the workshop
Materials shared elsewhere:
The tutorial used in this workshop is available via the Galaxy Training Network.
Wolfgang Maier, Bérénice Batut, Torsten Houwaart, Anika Erxleben, Björn Grüning, 2021 Exome sequencing data analysis for diagnosing a genetic disease (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html Online; accessed 25 May 2021
Melissa Burke (melissa@biocommons.org.au)
Price, Gareth (orcid: 0000-0003-2439-8650)
Variant calling, Genetic Variation Analysis, SNP annotation
WEBINAR: Variant interpretation: from the clinic to the lab… and back again
This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022.
Event description
The use of genomic testing is increasing rapidly as...
Keywords: Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling
WEBINAR: Variant interpretation: from the clinic to the lab… and back again
https://zenodo.org/records/7425920
https://dresa.org.au/materials/webinar-variant-interpretation-from-the-clinic-to-the-lab-and-back-again-5c6aed91-24cd-4314-9638-5e60d51e1af1
This record collates training materials associated with the Australian BioCommons/Melbourne Genomics webinar ‘Variant interpretation: from the clinic to the lab… and back again’. This webinar took place on 7 December 2022.
Event description
The use of genomic testing is increasing rapidly as the cost of genome sequencing decreases. Many areas of the health workforce are upskilling in genomics to help meet the increased demand. From clinicians learning how to use the right test, for the right patient, at the right time, to medical scientists learning how to interpret and classify variants, and data scientists to learning how to better create and continuously refine the pipelines and software to handle and curate big data.
In this webinar, we’ll hear from two people working at the coalface of variant interpretation – one in a diagnostic laboratory and the other in a cancer research laboratory.
Naomi Baker is Medical Scientist at Victorian Clinical Genetics Services. She helps process hundreds of genomic tests per year to find the variants that cause rare diseases. She’ll explain the clinical variant interpretation processes she uses, the pipelines, professions and people involved.
Joep Vissers is a Curation Team Leader, at the University of Melbourne Centre for Cancer Research, Department of Clinical Pathology. Joep, who also teaches cancer biology at the University, will describe how he uses variant interpretation in his work at the research/clinical interface, and the shift in mindset required when working with data for these different purposes.
Amy Nisselle, Genomics Workforce Lead at Melbourne Genomics, will then briefly outline some of the education programs available in clinical variant interpretation.
This webinar is co-presented by Australian BioCommons and Melbourne Genomics
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Variant interpretation from the clinic to the lab and back again.pdf: A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/wLMhwIiK8Lw
Melissa Burke (melissa@biocommons.org.au)
Baker, Naomi
Vissers, Joep (orcid: 0000-0003-0435-6824)
Nisselle, Amy (orcid: 0000-0002-8908-5906)
Clinical genomics, Variant interpretation, Variant curation, Continuing Professional Development, Professional Development, Bioinformatics, Genomics, Variant calling
WEBINAR: Getting started with whole genome mapping and variant calling on the command line
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022.
Event description
Life scientists are increasingly using whole genome...
Keywords: Genome mapping, Variant calling, Bioinformatics, Workflows
WEBINAR: Getting started with whole genome mapping and variant calling on the command line
https://zenodo.org/records/7024058
https://dresa.org.au/materials/webinar-getting-started-with-whole-genome-mapping-and-variant-calling-on-the-command-line-2046f36b-0c7a-4523-9c21-08046900d3ff
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with whole genome mapping and variant calling on the command line’. This webinar took place on 24 August 2022.
Event description
Life scientists are increasingly using whole genome sequencing (WGS) to ask and answer research questions across the tree of life. Before any of this work can be done, there is the essential but challenging task of processing raw sequencing data. Processing WGS data is a computationally challenging, multi-step process used to create a map of an individual’s genome and identify genetic variant sites. The tools you use in this process and overall workflow design can look very different for different researchers, it all depends on your dataset and the research questions you’re asking. Luckily, there are lots of existing WGS processing tools and pipelines out there, but knowing where to start and what your specific needs are is hard work, no matter how experienced you are.
In this webinar we will walk through the essential steps and considerations for researchers who are running and building reproducible WGS mapping and variant calling pipelines at the command line interface. We will discuss how to choose and evaluate a pipeline that is right for your dataset and research questions, and how to get access to the compute resources you need
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
WGS mapping and variant calling _slides (PDF): A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/Q2EceFyizio
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Genome mapping, Variant calling, Bioinformatics, Workflows