Tutorials to learn how to use STAN
Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.
Keywords: Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Tutorials to learn how to use STAN
https://mc-stan.org/users/documentation/tutorials.html
https://dresa.org.au/materials/tutorials-to-learn-how-to-use-stan
Stan tutorials offer links to exceptional tutorial papers, videos and statistics to learn Bayesian statistical methods and applied statistics.
https://mc-stan.org/about/team/
Statistics, applied statistics, Bayesian statistics, R software, Python, MATLAB
Open Ecoacoustics make your own recogniser
Includes the requirements and practical steps required to make your own automated call recogniser using a convolution neural network.
The "Requirements" section includes demo data and requirements for the data you should include to develop your own recogniser as well as links to Anaconda &...
Keywords: Ecoacoustics, call recogniser, convolutional neural network
Open Ecoacoustics make your own recogniser
https://openecoacoustics.org/resources/lessons/make-your-own-recognizer/
https://dresa.org.au/materials/open-ecoacoustics-make-your-own-recogniser
Includes the requirements and practical steps required to make your own automated call recogniser using a convolution neural network.
The "Requirements" section includes demo data and requirements for the data you should include to develop your own recogniser as well as links to Anaconda & Raven Lite software.
The "Practical Steps" provides instructions to run the required Jupyter notebook to build a recogniser with CNN.
* Note additional AI methods will be available soon
https://openecoacoustics.org/contact/
Dr Philip Eichinski
Dr Lance De Vine
Ecoacoustics, call recogniser, convolutional neural network
Open Ecoacoustics wrangling sound files
An introduction to slicing, dicing, chopping, resampling, compressing etc sound files with an introduction to command line and graphical tools.
A "Requirements" section with demo data, file dependencies, and required software.
A "Presentation" section with an online introduction to storing...
Keywords: Ecoacoustics, sound files, data wrangling
Open Ecoacoustics wrangling sound files
https://openecoacoustics.org/resources/lessons/wrangling-sound-files/
https://dresa.org.au/materials/open-ecoacoustics-wrangling-sound-files
An introduction to slicing, dicing, chopping, resampling, compressing etc sound files with an introduction to command line and graphical tools.
A "Requirements" section with demo data, file dependencies, and required software.
A "Presentation" section with an online introduction to storing data, repairing data and segmenting files.
A "Practical" section inclusive of setup, Terminal use, manipulating files with FFmpeg, using the AnalysisPrograms audio cutter, run EMU software
https://openecoacoustics.org/contact/
Dr Anthony Truskinger
Ecoacoustics, sound files, data wrangling
Open Ecoacoustics acoustic indices
Provides an introduction to and generation of false-colour spectrograms and indices.
Includes a "Requirements" section where demo audio files, other dependencies and required software.
Includes a "Presentation" section providing an online presentation on false colour...
Keywords: Ecoacoustics, false-colour spectrograms, acoustic indices
Open Ecoacoustics acoustic indices
https://openecoacoustics.org/resources/lessons/acoustics-indices/
https://dresa.org.au/materials/open-ecoacoustics-acoustic-indices
Provides an introduction to and generation of false-colour spectrograms and indices.
Includes a "Requirements" section where demo audio files, other dependencies and required software.
Includes a "Presentation" section providing an online presentation on false colour spectrograms.
Includes a "Practical" section that provides the setup, use of terminal, Analysis Programs software, and calculation of acoustic indices.
https://openecoacoustics.org/contact/
Marina D. A. Scarpelli
Ecoacoustics, false-colour spectrograms, acoustic indices
Open Ecoacoustics recording and labelling
This module includes recommendations for deployment, recording and labelling sounds, playing those sounds and annotation using Audacity and Raven software.
The "Requirements" section includes downloads of example data, required dependencies and software.
The "Presentation" walks through an...
Keywords: Ecoacoustics, recording sound, labelling sound, spectrograms
Open Ecoacoustics recording and labelling
https://openecoacoustics.org/resources/lessons/labelling/
https://dresa.org.au/materials/open-ecoacoustics-recording-and-labelling
This module includes recommendations for deployment, recording and labelling sounds, playing those sounds and annotation using Audacity and Raven software.
The "Requirements" section includes downloads of example data, required dependencies and software.
The "Presentation" walks through an online presentation with recommendations recorder deployment recommendations, annotation, raven software, & manual validation
The "Practical" includes setup, single species annotation of spectrograms, multi-species, and generating images
https://openecoacoustics.org/contact/
Callan Alexander
Ecoacoustics, recording sound, labelling sound, spectrograms
Open Ecoacoustics sound basics
This online presentation provides a review of five key concepts related to ecoacoustics: 1. Decibels, 2. clipping and gain, 3. ADC: Sample rate & bit depth, 4. Fast Fourier Transform (FFT), and 5. Spectrograms: time / frequency trade off.
Keywords: Ecoacoustics, sound basics, decibels, gain, sample rate, FFT, spectrograms
Open Ecoacoustics sound basics
https://openecoacoustics.org/resources/lessons/sound-basics/presentation/
https://dresa.org.au/materials/open-ecoacoustics-sound-basics
This online presentation provides a review of five key concepts related to ecoacoustics: 1. Decibels, 2. clipping and gain, 3. ADC: Sample rate & bit depth, 4. Fast Fourier Transform (FFT), and 5. Spectrograms: time / frequency trade off.
https://openecoacoustics.org/contact/
Dr Michael Towsey
Ecoacoustics, sound basics, decibels, gain, sample rate, FFT, spectrograms
Ecoacoustics & EcoCommons Generalised Dissimilarity Modelling (GDM) use case
This example highlights how data collected with passive acoustic monitoring (PAM) can be used to examine spatial variation in species composition.
This example draws from an R package developed to make GDM more accessible: https://github.com/EcoCommons-Australia/community-modelling
Keywords: Generalised Dissimilarity Modelling, Ecoacoustics, EcoCommons
Ecoacoustics & EcoCommons Generalised Dissimilarity Modelling (GDM) use case
https://openecoacoustics.org/resources/use-cases/gdm/
https://dresa.org.au/materials/ecoacoustics-ecocommons-generalised-dissimilarity-modelling-gdm-use-case
This example highlights how data collected with passive acoustic monitoring (PAM) can be used to examine spatial variation in species composition.
This example draws from an R package developed to make GDM more accessible: https://github.com/EcoCommons-Australia/community-modelling
https://openecoacoustics.org/contact/
Generalised Dissimilarity Modelling, Ecoacoustics, EcoCommons