WORKSHOP: Machine learning in the life sciences
This record includes training materials associated with the Australian BioCommons workshop ‘Machine Learning in the Life Sciences’. This on 11 June 2024.
Event description
Machine learning promises to revolutionise life science research by speeding up data analysis, enabling prediction of...
Keywords: Bioinformatics, Life Science, Machine Learning
WORKSHOP: Machine learning in the life sciences
https://zenodo.org/records/14676360
https://dresa.org.au/materials/workshop-machine-learning-in-the-life-sciences
This record includes training materials associated with the Australian BioCommons workshop ‘Machine Learning in the Life Sciences’. This on 11 June 2024.
Event description
Machine learning promises to revolutionise life science research by speeding up data analysis, enabling prediction of biological patterns and modelling complex biological systems.
But what exactly is machine learning and when should you use it?
This hands-on online workshop provides a high-level introduction to machine learning: what it is, its advantages and disadvantages compared to traditional modelling approaches and the types of scenarios where it may be the right tool for the job. Using example datasets and basic machine learning pipelines we contrast a few commonly used algorithms for constructing predictive models and explore some of their trade-offs. We discuss common pitfalls in how machine learning is applied and evaluated, with a focus on its application in the life sciences, to help you recognise overly optimistic results. We discuss how and why such errors arise and strategies to avoid them.
Lead trainer:
Dr Benjamin Goudey, Research Fellow, Florey Department of Neuroscience and Mental Health
Facilitators:
Dr Erin Graham, Queensland Cyber Infrastructure Foundation (QCIF) / James Cook University
William Pinzon Perez, Queensland Cyber Infrastructure Foundation (QCIF)
Dr Giorgia Mori, Sydney Informatics Hub, University of Sydney
Joseph McConnell, University of Adelaide
Jessica Chung, Melbourne Bioinformatics 0000-0002-0627-0955
Host:
Dr Melissa Burke, Australian BioCommons.
Training materials
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Schedule (PDF): Schedule describing the timing of sessions for the in person and online events
Materials shared elsewhere:
This workshop follows the Google Colab Notebook developed by Dr Benjamin Goudey: https://github.com/bwgoudey/IntroMLforLifeScienceWorkshopR
Melissa Burke (melissa@biocommons.org.au)
Goudey, Benjamin (orcid: 0000-0002-2318-985X)
Graham, Erin
Pinzon Perez, William
Mori, Giorgia (orcid: 0000-0003-3469-5632)
McConnell, Joseph
Chung, Jessica (orcid: 0000-0002-0627-0955)
Mather, Marius
Bioinformatics, Life Science, Machine Learning
WORKSHOP: Introduction to Machine Learning in R - from data to knowledge
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Machine Learning in R - from data to knowledge’. This workshop took place over one, 4 hour sessions on 09 December 2024.
Event description
With the rise in high-throughput sequencing...
Keywords: Bioinformatics, Machine Learning
WORKSHOP: Introduction to Machine Learning in R - from data to knowledge
https://zenodo.org/records/14545612
https://dresa.org.au/materials/workshop-introduction-to-machine-learning-in-r-from-data-to-knowledge
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Machine Learning in R - from data to knowledge’. This workshop took place over one, 4 hour sessions on 09 December 2024.
Event description
With the rise in high-throughput sequencing technologies, the volume of omics data has grown exponentially. A major issue is to mine useful knowledge from these heterogeneous collections of data. The analysis of complex high-volume data is not trivial and classical tools cannot be used to explore their full potential. Machine Learning (ML), a discipline in which computers perform automated learning without being programmed explicitly and assist humans to make sense of large and complex data sets, can thus be very useful in mining large omics datasets to uncover new insights that can advance the field of bioinformatics.
This hands-on workshop will introduce participants to the ML taxonomy and the applications of common ML algorithms to health data. The workshop will cover the foundational concepts and common methods being used to analyse omics data sets by providing a practical context through the use of basic but widely used R libraries. Participants will acquire an understanding of the standard ML processes, as well as the practical skills in applying them on familiar problems and publicly available real-world data sets.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Lead trainers: Dr Fotis Psomopoulos, Senior Researcher, Institute of Applied Biosciences (INAB), Center for Research and Technology Hellas (CERTH)
Facilitators:
Dr Giorgia Mori, Australian BioCommons
Dr Eden Zhang, Sydney Informatics Hub
Dr Erin Graham, Queensland Cyber Infrastructure Foundation (QCIF)
Infrastructure provision: Uwe Winter, Australian BioCommons
Host: Dr. Giorgia Mori, Australian BioCommons
Training materials
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Files and materials shared elsewhere:
Training materials webpage
Data and documentation
Melissa Burke (melissa@biocommons.org.au)
Psomopoulos, Fotis (orcid: 0000-0002-0222-4273)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Graham, Erin
Mori, Giorgia (orcid: 0000-0003-3469-5632)
Winter, Uwe
Bioinformatics, Machine Learning
Ten Simple Rules for Researchers: Upskilling for a Rapidly Evolving Workforce
The following recommendations were inspired by the Australian Research Data Commons (ARDC) Digital Research Skills Summit 2023, that brought together Researchers, Learning Designers, Skills Trainers, and Librarians in productive discussions on how to run effective researcher skills training....
Keywords: Training, Training Material, Short Format Training, Digital Skills, Researcher Training, Learning
Ten Simple Rules for Researchers: Upskilling for a Rapidly Evolving Workforce
https://zenodo.org/records/13989494
https://dresa.org.au/materials/ten-simple-rules-for-researchers-upskilling-for-a-rapidly-evolving-workforce
The following recommendations were inspired by the Australian Research Data Commons (ARDC) Digital Research Skills Summit 2023, that brought together Researchers, Learning Designers, Skills Trainers, and Librarians in productive discussions on how to run effective researcher skills training. These rules outline how to think about skills learning for researchers, plan training sessions, and efficiently maximize learning. We offer recommendations on how to design and develop learner-centered training programs (Rules 1 and 2), foster outreach, and connect with trainer communities (Rules 3 and 4). We then provide tips to manage and optimize training (Rules 5, 6, and 7), and conclude with valuable insights on preparing for uncertainty and the importance of post-training operations and continued learning (Rules 8, 9, and 10).
contact@ardc.edu.au
Lovelace-Tozer, Meirian (orcid: 0000-0001-6684-3041)
Brown, John (orcid: 0000-0002-6118-577X)
Clemens, Robert (orcid: 0000-0002-1359-5133)
Greenhill, Kathryn (orcid: 0000-0001-9357-6006)
Haseen, Fathima (orcid: 0009-0009-9950-1510)
Kingsley, Danny (orcid: 0000-0002-3636-5939)
Mills, Katie (orcid: 0000-0002-5243-6071)
Lyrtzis, Ellen
Mori, Giorgia (orcid: 0000-0003-3469-5632)
Steel, Kathryn M. (orcid: 0000-0002-5720-1239)
Stokes, Liz (orcid: 0000-0002-2973-5647)
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
Wong, Adeline (orcid: 0000-0002-9135-4757)
Gouda-Vossos, Amany (orcid: 0000-0002-6142-9439)
Training, Training Material, Short Format Training, Digital Skills, Researcher Training, Learning
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023.Event descriptionAnalysis and interpretation of single cell RNAseq (scRNAseq) data requires...
Keywords: bioinformatics, transcriptomics, single cell RNA-seq, Seurat, R statistical software
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/10042919
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-6a1126cf-7105-43ec-bf55-7c492f758301
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023.Event descriptionAnalysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data. We will discuss the 'why' behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.This workshop is presented by the Australian BioCommons, Queensland Cyber Infrastructure Foundation (QCIF) and the Monash Genomics and Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.Lead trainers: Sarah Williams, Adele Barugahare, Paul Harrison, Laura Perlaza JimenezFacilitators: Nick Matigan, Valentine Murigneux, Magdalena (Magda) AntczakInfrastructure provision: Uwe WinterCoordinator: Melissa BurkeTraining materialsMaterials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.Files and materials included in this record:Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshopMaterials shared elsewhere:This workshop follows the tutorial 'scRNAseq Analysis in R with Seurat'https://swbioinf.github.io/scRNAseqInR_Doco/index.htmlSlides used to introduce key topics are available via GitHubhttps://github.com/swbioinf/scRNAseqInR_Doco/tree/main/slidesThis material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Perlaza Jimenez, Laura (orcid: 0000-0002-8511-1134)
Matigan, Nicholas
Murigneux, Valentine (orcid: 0000-0002-1235-9462)
Antczak, Magdalena (orcid: 0000-0003-1503-1849)
Winter, Uwe
bioinformatics, transcriptomics, single cell RNA-seq, Seurat, R statistical software
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data...
Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/7072910
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.
We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.
This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
scRNAseq_Slides (PDF): Slides used to introduce topics
scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop
scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants
scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’
https://swbioinf.github.io/scRNAseqInR_Doco/index.html
This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.
It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Mehdi, Ahmed (orcid: 0000-0002-9300-2341)
Matigan, Nick
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Whitfield, Holly (orcid: 0000-0002-7282-387X)
Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/records/5781776
https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
Materials shared elsewhere:
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
ARDC 2023 Skills Summit Lightning Talks (Day 2 - February 10, 2023)
Presentations to the ARDC Skills Summit 2023 (Lightning Talks Day 2 - February 10th, 2023)
Dr Nisha Ghatak - From local to the global: NeSI's efforts in building digital skills capabilities across Aotearoa
Dr Melissa Burke - No one has time for training. Is doing less the answer?
Dr Giorgia Mori...
Keywords: training material, digital skills capability, digital skills partnerships, The Carpentries, bioinformatics training, cooperative training approaches, industry partnered training, learner pathways, user guidance, new training approaches, innovative training approaches
ARDC 2023 Skills Summit Lightning Talks (Day 2 - February 10, 2023)
https://zenodo.org/records/7711377
https://dresa.org.au/materials/ardc-2023-skills-summit-lightning-talks-day-2-february-10-2023-cde4d134-5091-420a-ad0f-a70d09c2970c
Presentations to the ARDC Skills Summit 2023 (Lightning Talks Day 2 - February 10th, 2023)
Dr Nisha Ghatak - From local to the global: NeSI's efforts in building digital skills capabilities across Aotearoa
Dr Melissa Burke - No one has time for training. Is doing less the answer?
Dr Giorgia Mori - Industry training collaborations. Is this the future?
Ann Backhaus - Skills pathways for developing the research workforce - status quo or let's get creative?
These presentations cover a national perspective of New Zealand's digital skills capability and partnerships, The Carpentries, bioinformatics training, innovative and cooperative training approaches, industry-partnered training, learner pathways, and the importance of user guidance.
contact@ardc.edu.au
Ghatak, Nisha (orcid: 0000-0002-1213-2196)
Burke, Melissa (orcid: 0000-0002-5571-8664)
Mori, Giorgia (orcid: 0000-0003-3469-5632)
Backhaus, Ann (orcid: 0000-0002-9023-055X)
training material, digital skills capability, digital skills partnerships, The Carpentries, bioinformatics training, cooperative training approaches, industry partnered training, learner pathways, user guidance, new training approaches, innovative training approaches
Data Storytelling
This Masterclass is an informative training session on data storytelling, designed to equip you with the skills and knowledge to effectively convey the "story" of your research. We explore various data storytelling techniques and introduce you to the tools available to visualize your data...
Keywords: data storytelling, training material
Data Storytelling
https://youtu.be/1nNN1O09RSk
https://dresa.org.au/materials/data-storytelling-90b4a4ef-bf32-4521-abd4-2767969598bd
This Masterclass is an informative training session on data storytelling, designed to equip you with the skills and knowledge to effectively convey the "story" of your research. We explore various data storytelling techniques and introduce you to the tools available to visualize your data effectively.
*The Sydney Informatics Hub is a Core Research Facility at The University of Sydney, enabling excellence in research.*
[https://sydney.edu.au/informatics-hub](https://sydney.edu.au/informatics-hub)
sih.training@sydney.edu.au
Mori, Giorgia (orcid: 0000-0003-3469-5632)
data storytelling, training material