7 Steps towards Reproducible Research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity...
Keywords: reproducibility, Reproducibility, reproducible workflows
Resource type: full-course, tutorial
7 Steps towards Reproducible Research
https://amandamiotto.github.io/ReproducibleResearch/
https://dresa.org.au/materials/7-steps-towards-reproducible-research
This workshop aims to take you further down your reproducibility path, by providing concepts and tools you can use in your everyday workflows. It is discipline and experience agnostic, and no coding experience is needed.
We will also examine how Reproducible Research builds business continuity into your research group, how the culture in your institute ecosystem can affect Reproducibility and how you can identify and address risks to your knowledge.
The workshop can be used as self-paced or as an instructor
Amanda Miotto - a.miotto@griffith.edu.au
Amanda Miotto
reproducibility, Reproducibility, reproducible workflows
phd
support
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023.Event descriptionAnalysis and interpretation of single cell RNAseq (scRNAseq) data requires...
Keywords: bioinformatics, transcriptomics, single cell RNA-seq, Seurat, R statistical software
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/10042919
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-6a1126cf-7105-43ec-bf55-7c492f758301
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023.Event descriptionAnalysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data. We will discuss the 'why' behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.This workshop is presented by the Australian BioCommons, Queensland Cyber Infrastructure Foundation (QCIF) and the Monash Genomics and Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.Lead trainers: Sarah Williams, Adele Barugahare, Paul Harrison, Laura Perlaza JimenezFacilitators: Nick Matigan, Valentine Murigneux, Magdalena (Magda) AntczakInfrastructure provision: Uwe WinterCoordinator: Melissa BurkeTraining materialsMaterials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.Files and materials included in this record:Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshopMaterials shared elsewhere:This workshop follows the tutorial 'scRNAseq Analysis in R with Seurat'https://swbioinf.github.io/scRNAseqInR_Doco/index.htmlSlides used to introduce key topics are available via GitHubhttps://github.com/swbioinf/scRNAseqInR_Doco/tree/main/slidesThis material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Perlaza Jimenez, Laura (orcid: 0000-0002-8511-1134)
Matigan, Nicholas
Murigneux, Valentine (orcid: 0000-0002-1235-9462)
Antczak, Magdalena (orcid: 0000-0003-1503-1849)
Winter, Uwe
bioinformatics, transcriptomics, single cell RNA-seq, Seurat, R statistical software
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data...
Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/7072910
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.
We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.
This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
scRNAseq_Slides (PDF): Slides used to introduce topics
scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop
scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants
scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’
https://swbioinf.github.io/scRNAseqInR_Doco/index.html
This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.
It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Mehdi, Ahmed (orcid: 0000-0002-9300-2341)
Matigan, Nick
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Whitfield, Holly (orcid: 0000-0002-7282-387X)
Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/records/5781776
https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
Materials shared elsewhere:
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
Create a website resume
Written for the Qld Research Bazaar conference 2021, this self paced lesson breaks down how to use Github pages to make a resume, with a simple and basic template to start off with. It discusses how to use Markdown and minimum HTML to customize the template, and offers explanations on how the...
Keywords: personal development, website
Resource type: tutorial, guide
Create a website resume
https://amandamiotto.github.io/ResumeLesson/HowIMadeThis
https://dresa.org.au/materials/create-a-website-resume
Written for the Qld Research Bazaar conference 2021, this self paced lesson breaks down how to use Github pages to make a resume, with a simple and basic template to start off with. It discusses how to use Markdown and minimum HTML to customize the template, and offers explanations on how the components work together.
a.miotto@griffith.edu.au
Amanda Miotto
personal development, website
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support
Data Storytelling
Nowadays, more information created than our audience could possibly analyse on their own! A study by Stanford professor Chip Heath found that during the recall of speeches, 63% of people remember stories and how they made them feel, but only 5% remember a single statistic. So, you should convert...
Keywords: data storytelling, data visualisation
Data Storytelling
https://griffithunilibrary.github.io/data-storytelling/
https://dresa.org.au/materials/data-storytelling
Nowadays, more information created than our audience could possibly analyse on their own! A study by Stanford professor Chip Heath found that during the recall of speeches, 63% of people remember stories and how they made them feel, but only 5% remember a single statistic. So, you should convert your insights and discovery from data into stories to share with non-experts with a language they understand. But how?
This tutorial helps you construct stories that incite an emotional response and create meaning and understanding for the audience by applying data storytelling techniques.
m.yamaguchi@griffith.edu.au
a.miotto@griffith.edu.au
Masami Yamaguchi
Amanda Miotto
Brett Parker
data storytelling, data visualisation
support
masters
phd
researcher