WEBINAR: KBase - A knowledge base for systems biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems...
Keywords: Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: KBase - A knowledge base for systems biology
https://zenodo.org/records/5717580
https://dresa.org.au/materials/webinar-kbase-a-knowledge-base-for-systems-biology-653d9753-989d-4194-9230-6e2d90652955
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems Biology Knowledgebase (KBase) is a free, open source, software and data science platform designed to meet the grand challenge of systems biology: predicting and designing biological function.
This webinar will provide an overview of the KBase mission and user community, as well as a tour of the online platform and basic functionality. You’ll learn how KBase can support your research: Upload data, run analysis tools (Apps), share your analysis with collaborators, and publish your data and reproducible workflows. We’ll highlight a brand new feature that enables users to link environment and measurement data to sequencing data. You’ll also find out how KBase supports findable, accessible, interoperable, and reusable (FAIR) research by providing open, reproducible, shareable bioinformatics workflows.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Q&A for Australian BioCommons KBase Webinar [PDF]: Document containing answers to questions asked during the webinar and links to additional resources
Introduction to KBase: Australian BioCommons Webinar [PDF]: Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/tJ94i9gOJfU
The slides are also available as Google slides:
https://tinyurl.com/KBase-webinar-slides
Melissa Burke (melissa@biocommons.org.au)
Dow, Ellen (orcid: 0000-0002-2079-0260)
Wood-Charlson, Elisha (orcid: 0000-0001-9557-7715)
Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software
This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.
Event description
bio.tools provides easy access to essential scientific...
Keywords: Bioinformatics, Research software, EDAM, Workflows, FAIR
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software
https://zenodo.org/records/7024050
https://dresa.org.au/materials/webinar-bio-tools-making-it-easier-to-find-understand-and-cite-biological-tools-and-software-aea38c9e-0b40-4308-bafd-f7580563f520
This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.
Event description
bio.tools provides easy access to essential scientific and technical information about software, command-line tools, databases and services. It’s backed by ELIXIR, the European Infrastructure for Biological Information, and is being used in Australia to register software (e.g. Galaxy Australia, prokka). It underpins the information provided in the Australian BioCommons discovery service ToolFinder.
Hans Ienasescu and Matúš Kalaš join us to explain how bio.tools uses a community driven, open science model to create this collection of resources and how it makes it easier to find, understand, utilise and cite them. They’ll delve into how bio.tools is using standard semantics (e.g. the EDAM ontology) and syntax (e.g. biotoolsSchema) to enrich the annotation and description of tools and resources. Finally, we’ll see how the community can contribute to bio.tools and take advantage of its key features to share and promote their own research software.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
biotools_EDAM_slides (PDF): A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/K0J4_bAUG3Y
Melissa Burke (melissa@biocommons.org.au)
Ienasescu, Hans
Kalaš, Matúš (orcid: 0000-0002-1509-4981)
Bioinformatics, Research software, EDAM, Workflows, FAIR
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/records/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
Spreadsheets, organising data and first steps with R
Manipulating and analysing data with dplyr
Data visualisation
Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Recommended resources (PDF): A list of resources recommended by trainers and participants
Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
Using PennyLane on Setonix
Introduction to quantum computing
Keywords: Pawsey Supercomputing Centre, Setonix, quantum, PennyLane
Using PennyLane on Setonix
https://www.youtube.com/playlist?list=PLmu61dgAX-abmJkmKi8GR46TnvsvP3-ro
https://dresa.org.au/materials/using-pennylane-on-setonix
Introduction to quantum computing
training@pawsey.org.au
Pawsey Supercomputing Research Centre
Pawsey Supercomputing Centre, Setonix, quantum, PennyLane
Pawsey: AWS Quantum 101 Using Amazon Braket
Join us as AWS Quantum Specialists introduce quantum simulators and gate-based quantum computers, before turning to more advanced topics.
Keywords: Pawsey Supercomputing Centre, AWS, quantum, HPC
Pawsey: AWS Quantum 101 Using Amazon Braket
https://www.youtube.com/playlist?list=PLmu61dgAX-abDLr86-bG8zqfBIffu6Eh2
https://dresa.org.au/materials/pawsey-aws-quantum-101-using-amazon-braket
Join us as AWS Quantum Specialists introduce quantum simulators and gate-based quantum computers, before turning to more advanced topics.
training@pawsey.org.au
Pawsey Supercomputing Research Centre
Pawsey Supercomputing Centre, AWS, quantum, HPC
HIP Advanced Workshop
Additional topics presented about HIP, covering memory management, kernel optimisation, IO optimisation and porting CUDA to HIP.
Keywords: HIP, Pawsey Supercomputing Centre, supercomputing
HIP Advanced Workshop
https://www.youtube.com/playlist?list=PLmu61dgAX-absyWGpFsiw1TD1rgmjHZee
https://dresa.org.au/materials/hip-advanced-workshop
Additional topics presented about HIP, covering memory management, kernel optimisation, IO optimisation and porting CUDA to HIP.
training@pawsey.org.au
Pawsey Supercomputing Research Centre
HIP, Pawsey Supercomputing Centre, supercomputing
OpenCL
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC...
Keywords: OpenCL, supercomputing, CPUs, GPUs, FPGAs, HPC
OpenCL
https://www.youtube.com/playlist?list=PLmu61dgAX-aa_lk5fby5PjuS49snHpyYL
https://dresa.org.au/materials/opencl-3eabb316-794d-4f46-959a-725be3ae1bde
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC infrastructure. Topics covered in this course are :
- Introduction to OpenCL
- How to build and run applications on Setonix with OpenCL and MPI
- Matrix multiplication with OpenCL – fully explained line by line
- How to debug OpenCL applications and kernels
- Measure performance with OpenCL Events and open source tools
- Memory management
- Coarse and fine-grained shared memory
- Strategies for building optimised OpenCL kernels
- Optimise IO performance with asynchronous operations
training@pawsey.org.au
Pawsey Supercomputing Research Centre
OpenCL, supercomputing, CPUs, GPUs, FPGAs, HPC
Managing Data using Acacia @ Pawsey
Acacia is Pawsey's "warm tier" or project storage. This object store is fully integrated with Setonix, Pawsey's main supercomputer, enabling fast transfer of data for project use.
These short videos introduce this high-speed object storage for hosting research data online.
Acacia is named...
Keywords: data, data skills, Acacia, Pawsey Supercomputing Centre, object storage, File systems
Managing Data using Acacia @ Pawsey
https://www.youtube.com/playlist?list=PLmu61dgAX-aYxrbqtSYHS1ufVZ9xs1AnI
https://dresa.org.au/materials/managing-data-using-acacia-pawsey
Acacia is Pawsey's "warm tier" or project storage. This object store is fully integrated with Setonix, Pawsey's main supercomputer, enabling fast transfer of data for project use.
These short videos introduce this high-speed object storage for hosting research data online.
Acacia is named after Australia’s national floral emblem the Golden Wattle – Acacia pycnantha.
training@pawsey.org.au
Pawsey Supercomputing Research Centre
data, data skills, Acacia, Pawsey Supercomputing Centre, object storage, File systems
ugrad
masters
phd
ecr
researcher
support
professional
OpenCL
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC...
Keywords: supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs
Resource type: activity
OpenCL
https://www.youtube.com/playlist?list=PLmu61dgAX-aa_lk5fby5PjuS49snHpyYL
https://dresa.org.au/materials/opencl
Supercomputers make use of accelerators from a variety of different hardware vendors, using devices such as multi-core CPU’s, GPU’s and even FPGA’s. OpenCL is a way for your HPC application to make effective use of heterogeneous computing devices, and to avoid code refactoring for new HPC infrastructure.
training@pawsey.org.au
Toby Potter
Pawsey Supercomputing Research Centre
Pelagos
Toby Potter
supercomputing, Pawsey Supercomputing Centre, CPUs, GPUs, OpenCL, FPGAs
masters
ecr
researcher
support
AMD Profiling
The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs.
You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite.
You will also learn how to use the new...
Keywords: supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm
Resource type: activity
AMD Profiling
https://www.youtube.com/playlist?list=PLmu61dgAX-aaQOCG5Jlw8oLBORJfoQC2o
https://dresa.org.au/materials/amd-profiling
The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs.
You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite.
You will also learn how to use the new Omnitools - Omnitrace and Omniperf - that were introduced at the end of 2022. Omnitrace is a powerful tracing profiler for both CPU and GPU. It can collect data from a much wider range of sources and includes hardware counters and sampling approaches. Omniperf is a performance analysis tool that can help you pinpoint how your application is performing with a visual view of the memory hierarchy on the GPU as well as reporting the percentage of peak for many different measurements.
training@pawsey.org.au
AMD
Pawsey Supercomputing Research Centre
supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm
Evaluate Application Performance using TAU and E4S
In this workshop, you learn about the Extreme-scale Scientific Software Stack and the TAU Performance System® and its interfaces to other tools and libraries. The workshop includes sample codes that illustrate the different instrumentation and measurement choices.
Topics covered include...
Keywords: supercomputing, TAU, E4S, Performance, ROCm, OpenMP
Resource type: activity
Evaluate Application Performance using TAU and E4S
https://www.youtube.com/playlist?list=PLmu61dgAX-aakuGnuVPiWVaqCLgm3kdRG
https://dresa.org.au/materials/evaluate-application-performance-using-tau-and-e4s
In this workshop, you learn about the Extreme-scale Scientific Software Stack and the TAU Performance System® and its interfaces to other tools and libraries. The workshop includes sample codes that illustrate the different instrumentation and measurement choices.
Topics covered include generating performance profiles and traces with memory utilization and headroom, I/O, and interfaces to ROCm, including ROCProfiler and ROCTracer with support for collecting hardware performance data.
The workshop also covers instrumentation of OpenMP programs using OpenMP Tools Interface (OMPT), including support for target offload and measurement of a program’s memory footprint.
During the session, there are hands-on activities on scalable tracing using OTF2 and visualization using the Vampir trace analysis tool. Performance data analysis using ParaProf and PerfExplorer are demonstrated using the performance data management framework (TAUdb) that includes TAU’s performance database.
training@pawsey.org.au
Sameer Shende
Pawsey Supercomputing Research Centre
supercomputing, TAU, E4S, Performance, ROCm, OpenMP
HIP Workshop
The Heterogeneous Interface for Portability (HIP) provides a programming framework for harnessing the compute capabilities of multicore processors, such as the MI250X GPU’s on Setonix.
In this course we focus on the essentials of developing HIP applications with a focus on...
Keywords: HIP, supercomputing, Programming, GPUs, MPI, debugging
Resource type: full-course
HIP Workshop
https://support.pawsey.org.au/documentation/display/US/Pawsey+Training+Resources
https://dresa.org.au/materials/hip-workshop
The Heterogeneous Interface for Portability (HIP) provides a programming framework for harnessing the compute capabilities of multicore processors, such as the MI250X GPU’s on Setonix.
In this course we focus on the essentials of developing HIP applications with a focus on supercomputing.
Agenda
- Introduction to HIP and high level features
- How to build and run applications on Setonix with HIP and MPI
- A complete line-by-line walkthrough of a HIP-enabled application
- Tools and techniques for debugging and measuring the performance of HIP applications
training@pawsey.org.au
Pelagos
Pawsey Supercomputing Research Centre
HIP, supercomputing, Programming, GPUs, MPI, debugging
C/C++ Refresher
The C++ programming language and its C subset is used extensively in research environments. In particular it is the language utilised in the parallel programming frameworks CUDA, HIP, and OpenCL.
This workshop is designed to equip participants with “Survival C++”, an understanding of the basic...
Keywords: supercomputing, C/C++, Programming
Resource type: activity
C/C++ Refresher
https://www.youtube.com/playlist?list=PLmu61dgAX-aYsRsejVfwHVhpPU2381Njg
https://dresa.org.au/materials/c-c-refresher
The C++ programming language and its C subset is used extensively in research environments. In particular it is the language utilised in the parallel programming frameworks CUDA, HIP, and OpenCL.
This workshop is designed to equip participants with “Survival C++”, an understanding of the basic syntax, how information is encoded in binary format, and how to compile and debug C++ software.
training@pawsey.org.au
Pelagos
Pawsey Supercomputing Research Centre
supercomputing, C/C++, Programming
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software
This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.
Event description
bio.tools provides easy access to essential...
Keywords: Bioinformatics, Research software, EDAM, Workflows, FAIR
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software
https://zenodo.org/record/7024050
https://dresa.org.au/materials/webinar-bio-tools-making-it-easier-to-find-understand-and-cite-biological-tools-and-software-9180e32a-f4f5-4993-a90a-a9bfcfafd4f3
This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.
**Event description**
bio.tools provides easy access to essential scientific and technical information about software, command-line tools, databases and services. It’s backed by ELIXIR, the European Infrastructure for Biological Information, and is being used in Australia to register software (e.g. Galaxy Australia, prokka). It underpins the information provided in the Australian BioCommons discovery service ToolFinder.
Hans Ienasescu and Matúš Kalaš join us to explain how bio.tools uses a community driven, open science model to create this collection of resources and how it makes it easier to find, understand, utilise and cite them. They’ll delve into how bio.tools is using standard semantics (e.g. the EDAM ontology) and syntax (e.g. biotoolsSchema) to enrich the annotation and description of tools and resources. Finally, we’ll see how the community can contribute to bio.tools and take advantage of its key features to share and promote their own research software.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
* Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
* Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
* biotools_EDAM_slides (PDF): A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/K0J4_bAUG3Y
Melissa Burke (melissa@biocommons.org.au)
Ienasescu, Hans
Kalaš, Matúš (orcid: 0000-0002-1509-4981)
Bioinformatics, Research software, EDAM, Workflows, FAIR
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/record/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
**Event description**
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
- Spreadsheets, organising data and first steps with R
- Manipulating and analysing data with dplyr
- Data visualisation
- Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Schedule (PDF): A breakdown of the topics and timings for the workshop
- Recommended resources (PDF): A list of resources recommended by trainers and participants
- Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
**Materials shared elsewhere:**
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software
This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.
Event description
bio.tools provides easy access to essential...
Keywords: Bioinformatics, Research software, EDAM, Workflows, FAIR
WEBINAR: bio.tools - making it easier to find, understand and cite biological tools and software
https://zenodo.org/record/6758147
https://dresa.org.au/materials/webinar-bio-tools-making-it-easier-to-find-understand-and-cite-biological-tools-and-software
This record includes training materials associated with the Australian BioCommons webinar ‘bio.tools - making it easier to find, understand and cite biological tools and software’. This webinar took place on 21 June 2022.
**Event description**
bio.tools provides easy access to essential scientific and technical information about software, command-line tools, databases and services. It’s backed by ELIXIR, the European Infrastructure for Biological Information, and is being used in Australia to register software (e.g. Galaxy Australia, prokka). It underpins the information provided in the Australian BioCommons discovery service ToolFinder.
Hans Ienasescu and Matúš Kalaš join us to explain how bio.tools uses a community driven, open science model to create this collection of resources and how it makes it easier to find, understand, utilise and cite them. They’ll delve into how bio.tools is using standard semantics (e.g. the EDAM ontology) and syntax (e.g. biotoolsSchema) to enrich the annotation and description of tools and resources. Finally, we’ll see how the community can contribute to bio.tools and take advantage of its key features to share and promote their own research software.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- biotools_EDAM_slides (PDF): A PDF copy of the slides presented during the webinar.
**Materials shared elsewhere:**
A recording of this webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/K0J4_bAUG3Y
Melissa Burke (melissa@biocommons.org.au)
Ienasescu, Hans
Kalaš, Matúš (orcid: 0000-0002-1509-4981)
Bioinformatics, Research software, EDAM, Workflows, FAIR
WEBINAR: KBase - A knowledge base for systems biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy...
Keywords: Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: KBase - A knowledge base for systems biology
https://zenodo.org/record/5717580
https://dresa.org.au/materials/webinar-kbase-a-knowledge-base-for-systems-biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
**Event description**
Developed for bench biologists and bioinformaticians, The Department of Energy Systems Biology Knowledgebase (KBase) is a free, open source, software and data science platform designed to meet the grand challenge of systems biology: predicting and designing biological function.
This webinar will provide an overview of the KBase mission and user community, as well as a tour of the online platform and basic functionality. You’ll learn how KBase can support your research: Upload data, run analysis tools (Apps), share your analysis with collaborators, and publish your data and reproducible workflows. We’ll highlight a brand new feature that enables users to link environment and measurement data to sequencing data. You’ll also find out how KBase supports findable, accessible, interoperable, and reusable (FAIR) research by providing open, reproducible, shareable bioinformatics workflows.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Q&A for Australian BioCommons KBase Webinar [PDF]: Document containing answers to questions asked during the webinar and links to additional resources
- Introduction to KBase: Australian BioCommons Webinar [PDF]: Slides presented during the webinar
**Materials shared elsewhere:**
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/tJ94i9gOJfU
The slides are also available as Google slides:
https://tinyurl.com/KBase-webinar-slides
Melissa Burke (melissa@biocommons.org.au)
Dow, Ellen (orcid: 0000-0002-2079-0260)
Wood-Charlson, Elisha (orcid: 0000-0001-9557-7715)
Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology