Register training material
8 materials found

Keywords: Workflows 

and

Authors: Dow, Ellen (orcid: 0000-000...  or Deshpande, Nandan (orcid: 0...  or Makunin, Igor 


WORKSHOP: Hybrid de novo genome assembly

This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.

Workshop description

It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches...

Keywords: Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly

WORKSHOP: Hybrid de novo genome assembly https://dresa.org.au/materials/workshop-hybrid-de-novo-genome-assembly-714004ba-0348-47c8-a68f-038a1f8ccfb1 This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021. Workshop description It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches which enable research on organisms for which reference genomes were not previously available. These approaches combine the strengths of short (Illumina) and long (PacBio or Nanopore) read technologies, resulting in improved assembly quality. In this workshop we will learn how to create and assess genome assemblies from Illumina and Nanopore reads using data from a Bacillus Subtilis strain. We will demonstrate two hybrid-assembly methods using the tools Flye, Pilon, and Unicycler to perform assembly and subsequent error correction. You will learn how to visualise input read sets and the assemblies produced at each stage and assess the quality of the final assembly. All analyses will be performed using Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. This workshop is presented by the Australian BioCommons and Melbourne Bioinformatics with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop   Materials shared elsewhere: This workshop follows the tutorial ‘Hybrid genome assembly - Nanopore and Illumina’ developed by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/hybrid_assembly/nanopore_assembly/ Melissa Burke (melissa@biocommons.org.au) Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly
WORKSHOP: RNA-Seq: reads to differential genes and pathways

This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.

Event description

RNA sequencing (RNA-seq) is a common method used to...

Keywords: Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re

WORKSHOP: RNA-Seq: reads to differential genes and pathways https://dresa.org.au/materials/workshop-rna-seq-reads-to-differential-genes-and-pathways-5a384156-d3de-4d5d-9797-e689bf6592f8 This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022. Event description RNA sequencing (RNA-seq) is a common method used to understand the differences in gene expression and molecular pathways between two or more groups. This workshop introduces the fundamental concepts of RNA sequencing experiments and will allow you to try out the analysis using data from a study of Williams-Beuren Syndrome, a rare disease.  In the first part of the workshop you will learn how to convert sequence reads into analysis ready count data. To do this we will use nf-core/rnaseq - a portable, scalable, reproducible and publicly available workflow on Pawsey Nimbus Cloud. In the second part of the workshop you will use the count data you created to identify differential genes and pathways using R/Rstudio. By the end of the workshop, you should be able to perform your own RNA-seq analysis for differential gene expression and pathway analysis! This workshop is presented by the Australian BioCommons and Sydney Informatics Hub with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. RNAseq reads to differential genes and pathways - Additional Resources (PDF): Additional resources compiled by the Sydney Informatics Hub rnaseq_DE_analysis_Day2.html: HTML version of code used on day 2 of the workshop rnaseq_DE_analysis_Day2.Rmd: R Markdown version of code used on day 2 of the workshop RNAseq reads to differential genes and pathways_Q_and_A (PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere: This workshop follows the tutorial ‘RNA-seq: reads to differential gene expression workshop series’ developed by the Sydney Informatics Hub. https://sydney-informatics-hub.github.io/training.RNAseq.series-quarto/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
WEBINAR: Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud

This record includes training materials associated with the Australian BioCommons webinar ‘Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud’. This webinar took place on 20 September 2022.

Event description 

Bioinformatics workflows can support...

Keywords: Bioinformatics, Workflows, Nextflow, Containerisation

WEBINAR: Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud https://dresa.org.au/materials/webinar-portable-reproducible-and-scalable-bioinformatics-workflows-using-nextflow-and-pawsey-nimbus-cloud-824bc004-4dcb-4bb5-b0dc-a207c44bbbe6 This record includes training materials associated with the Australian BioCommons webinar ‘Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud’. This webinar took place on 20 September 2022. Event description  Bioinformatics workflows can support portable, reproducible and scalable analysis of omics datasets but using workflows can be challenging for both beginners and experienced bioinformaticians. Beginners face a steep learning curve to be able to build and deploy their own bioinformatics workflows while those with more experience face challenges productionising and scaling code for custom workflows and big data.  Bioinformaticians across the world are using Nextflow to build and manage workflows. Many of these workflows are shared for others to use and supported by the community via nf-co.re. So far, 39 workflows for omics data are available with another 23 under development. These workflows cover common analyses such as RNAseq, mapping, variant calling, single cell transcriptomics and more and can be easily deployed by anyone, regardless of skill level. In this webinar, Nandan Deshpande from the Sydney Informatics Hub, University of Sydney, will discuss how you can deploy freely available Nextflow (nf.co-re) bioinformatics workflows with a single command. We describe how you can quickly get started deploying these workflows using Pawsey Nimbus Cloud. For advanced users, we introduce you to Nextflow concepts to get you started with building your own workflows that will save you time and support reproducible, portable and scalable analysis. In the latter half of the webinar, Sarah Beecroft from the Pawsey Supercomputing Research Centre will talk about their Nimbus Cloud systems. While Nextflow supports portability and can run on many computing infrastructures, we describe why we specifically love using Nimbus with Nextflow for many bioinformatics projects. We will describe some of the nf.co-re workflows that we have used on Nimbus and the research outcomes. We will also cover when not to use Nimbus and the alternatives we recommend.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Nextflow_Nimbus_slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VnLX63yXbJU Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, Nextflow, Containerisation
WORKSHOP: Introduction to Metabarcoding using QIIME2

This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.

Event description

Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy...

Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome

WORKSHOP: Introduction to Metabarcoding using QIIME2 https://dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2-d3a7ac82-63aa-47e6-9d8e-5126419f9982 This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022. Event description Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.  This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.  Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Materials shared elsewhere: This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WORKSHOP: RNA-Seq: reads to differential genes and pathways

This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.

Event description

RNA sequencing (RNA-seq) is a common method...

Keywords: Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re

WORKSHOP: RNA-Seq: reads to differential genes and pathways https://dresa.org.au/materials/workshop-rna-seq-reads-to-differential-genes-and-pathways This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022. **Event description** RNA sequencing (RNA-seq) is a common method used to understand the differences in gene expression and molecular pathways between two or more groups. This workshop introduces the fundamental concepts of RNA sequencing experiments and will allow you to try out the analysis using data from a study of Williams-Beuren Syndrome, a rare disease.  In the first part of the workshop you will learn how to convert sequence reads into analysis ready count data. To do this we will use nf-core/rnaseq - a portable, scalable, reproducible and publicly available workflow on Pawsey Nimbus Cloud. In the second part of the workshop you will use the count data you created to identify differential genes and pathways using R/Rstudio. By the end of the workshop, you should be able to perform your own RNA-seq analysis for differential gene expression and pathway analysis! This workshop is presented by the Australian BioCommons and Sydney Informatics Hub with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * RNAseq reads to differential genes and pathways - Additional Resources (PDF): Additional resources compiled by the Sydney Informatics Hub * rnaseq_DE_analysis_Day2.html: HTML version of code used on day 2 of the workshop * rnaseq_DE_analysis_Day2.Rmd: R Markdown version of code used on day 2 of the workshop * RNAseq reads to differential genes and pathways_Q_and_A (PDF): Archive of questions and their answers from the workshop Slack Channel. **Materials shared elsewhere:** This workshop follows the tutorial ‘RNA-seq: reads to differential gene expression workshop series’ developed by the Sydney Informatics Hub. https://sydney-informatics-hub.github.io/training.RNAseq.series-quarto/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
WEBINAR: Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud

This record includes training materials associated with the Australian BioCommons webinar ‘Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud’. This webinar took place on 20 September 2022.

Event description 

Bioinformatics workflows can...

Keywords: Bioinformatics, Workflows, Nextflow, Containerisation

WEBINAR: Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud https://dresa.org.au/materials/webinar-portable-reproducible-and-scalable-bioinformatics-workflows-using-nextflow-and-pawsey-nimbus-cloud This record includes training materials associated with the Australian BioCommons webinar ‘Portable, reproducible and scalable bioinformatics workflows using Nextflow and Pawsey Nimbus Cloud’. This webinar took place on 20 September 2022. **Event description**  Bioinformatics workflows can support portable, reproducible and scalable analysis of omics datasets but using workflows can be challenging for both beginners and experienced bioinformaticians. Beginners face a steep learning curve to be able to build and deploy their own bioinformatics workflows while those with more experience face challenges productionising and scaling code for custom workflows and big data.  Bioinformaticians across the world are using Nextflow to build and manage workflows. Many of these workflows are shared for others to use and supported by the community via nf-co.re. So far, 39 workflows for omics data are available with another 23 under development. These workflows cover common analyses such as RNAseq, mapping, variant calling, single cell transcriptomics and more and can be easily deployed by anyone, regardless of skill level. In this webinar, Nandan Deshpande from the Sydney Informatics Hub, University of Sydney, will discuss how you can deploy freely available Nextflow (nf.co-re) bioinformatics workflows with a single command. We describe how you can quickly get started deploying these workflows using Pawsey Nimbus Cloud. For advanced users, we introduce you to Nextflow concepts to get you started with building your own workflows that will save you time and support reproducible, portable and scalable analysis. In the latter half of the webinar, Sarah Beecroft from the Pawsey Supercomputing Research Centre will talk about their Nimbus Cloud systems. While Nextflow supports portability and can run on many computing infrastructures, we describe why we specifically love using Nimbus with Nextflow for many bioinformatics projects. We will describe some of the nf.co-re workflows that we have used on Nimbus and the research outcomes. We will also cover when not to use Nimbus and the alternatives we recommend.   Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * Nextflow_Nimbus_slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VnLX63yXbJU Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, Nextflow, Containerisation
WORKSHOP: Introduction to Metabarcoding using QIIME2

This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.

Event description

Metabarcoding has revolutionised the study of biodiversity science. By combining DNA...

Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome

WORKSHOP: Introduction to Metabarcoding using QIIME2 https://dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2 This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022. **Event description** Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.  This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.  Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop **Materials shared elsewhere:** This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WORKSHOP: Hybrid de novo genome assembly

This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021.

Workshop description

It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly...

Keywords: Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly

WORKSHOP: Hybrid de novo genome assembly https://dresa.org.au/materials/workshop-hybrid-de-novo-genome-assembly This record includes training materials associated with the Australian BioCommons workshop ‘Hybrid de novo genome assembly’. This workshop took place on 7 October 2021. **Workshop description** It’s now easier than ever to assemble new reference genomes thanks to hybrid genome assembly approaches which enable research on organisms for which reference genomes were not previously available. These approaches combine the strengths of short (Illumina) and long (PacBio or Nanopore) read technologies, resulting in improved assembly quality. In this workshop we will learn how to create and assess genome assemblies from Illumina and Nanopore reads using data from a Bacillus Subtilis strain. We will demonstrate two hybrid-assembly methods using the tools Flye, Pilon, and Unicycler to perform assembly and subsequent error correction. You will learn how to visualise input read sets and the assemblies produced at each stage and assess the quality of the final assembly. All analyses will be performed using Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. This workshop is presented by the Australian BioCommons and Melbourne Bioinformatics with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop **Materials shared elsewhere:** This workshop follows the tutorial ‘Hybrid genome assembly - Nanopore and Illumina’ developed by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/hybrid_assembly/nanopore_assembly/ Melissa Burke (melissa@biocommons.org.au) Galaxy Australia, Bioinformatics, Analysis, Workflows, Genomics, Genome assembly, De novo assembly