WEBINAR: KBase - A knowledge base for systems biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems...
Keywords: Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: KBase - A knowledge base for systems biology
https://zenodo.org/records/5717580
https://dresa.org.au/materials/webinar-kbase-a-knowledge-base-for-systems-biology-653d9753-989d-4194-9230-6e2d90652955
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems Biology Knowledgebase (KBase) is a free, open source, software and data science platform designed to meet the grand challenge of systems biology: predicting and designing biological function.
This webinar will provide an overview of the KBase mission and user community, as well as a tour of the online platform and basic functionality. You’ll learn how KBase can support your research: Upload data, run analysis tools (Apps), share your analysis with collaborators, and publish your data and reproducible workflows. We’ll highlight a brand new feature that enables users to link environment and measurement data to sequencing data. You’ll also find out how KBase supports findable, accessible, interoperable, and reusable (FAIR) research by providing open, reproducible, shareable bioinformatics workflows.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Q&A for Australian BioCommons KBase Webinar [PDF]: Document containing answers to questions asked during the webinar and links to additional resources
Introduction to KBase: Australian BioCommons Webinar [PDF]: Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/tJ94i9gOJfU
The slides are also available as Google slides:
https://tinyurl.com/KBase-webinar-slides
Melissa Burke (melissa@biocommons.org.au)
Dow, Ellen (orcid: 0000-0002-2079-0260)
Wood-Charlson, Elisha (orcid: 0000-0001-9557-7715)
Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WORKSHOP: RNASeq: reads to differential genes and pathways
This record includes training materials associated with the Australian BioCommons workshop 'RNASeq: reads to differential genes and pathways'. This workshop took place over two, 3 hour sessions on 11 and 12 October 2023.Event descriptionRNA sequencing (RNAseq) is a popular and powerful technique...
Keywords: bioinformatics, transcriptomics, RNA-seq, RNAseq
WORKSHOP: RNASeq: reads to differential genes and pathways
https://zenodo.org/records/10045628
https://dresa.org.au/materials/workshop-rnaseq-reads-to-differential-genes-and-pathways
This record includes training materials associated with the Australian BioCommons workshop 'RNASeq: reads to differential genes and pathways'. This workshop took place over two, 3 hour sessions on 11 and 12 October 2023.Event descriptionRNA sequencing (RNAseq) is a popular and powerful technique used to understand the activity of genes. Using differential gene profiling methods, we can use RNAseq data to gain valuable insights into gene activity and identify variability in gene expression between samples to understand the molecular pathways underpinning many different traits. In this hands-on workshop, you will learn RNAseq fundamentals as you process, analyse, and interpret the results from a real RNAseq experiment on the command-line. In session one, you will convert raw sequence reads to analysis-ready count data with the nf-core/rnaseq workflow. In session two, you'll work interactively in RStudio to identify differentially expressed genes,perform functional enrichment analysis, and visualise and interpret your results using popular and best practice R packages. This workshop was delivered as a part of the Australian BioCommons Bring Your Own Data Platforms Project and will provide you with an opportunity to explore services and infrastructure built specifically for life scientists working at the command line. By the end of the workshop, you will be familiar with Pawsey's Nimbus cloud platform and be able to process your own RNAseq datasets and perform differential expression analysis on the command-line. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.Lead trainers: Dr Georgina Samaha (Sydney Informatics Hub), Dr Nandan Deshpande (Sydney Informatics Hub)Facilitators: Ching-Yu Lu and Jessica Chung.Infrastructure provision: Audrey Stott (Pawsey Supercomputing Research Centre), Alex Ip (AARNet)Host: Melissa Burke, Australian BioCommons Training materialsFiles and materials included in this record:Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.Materials shared elsewhere:This workshop follows the tutorial 'Introduction to RNAseq workshop: reads to differential gene expression' developed by the Sydney Informatics Hub.https://sydney-informatics-hub.github.io/rnaseq-workshop-2023/Additional supporting materials are available via GitHubRstudio rnaseq container: https://github.com/Sydney-Informatics-Hub/Rstudio-rnaseq-contained/tree/mainRNAseq differential expression R notebook: https://github.com/Sydney-Informatics-Hub/rna-differential-expression-Rnotebook
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Lu, Ching-Yu
Chung, Jessica (orcid: 0000-0002-0627-0955)
Stott, Audrey
Ip, Alex (orcid: 0000-0001-8937-8904)
bioinformatics, transcriptomics, RNA-seq, RNAseq
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/records/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
Spreadsheets, organising data and first steps with R
Manipulating and analysing data with dplyr
Data visualisation
Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Recommended resources (PDF): A list of resources recommended by trainers and participants
Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation