WEBINAR: KBase - A knowledge base for systems biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems...
Keywords: Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: KBase - A knowledge base for systems biology
https://zenodo.org/records/5717580
https://dresa.org.au/materials/webinar-kbase-a-knowledge-base-for-systems-biology-653d9753-989d-4194-9230-6e2d90652955
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy Systems Biology Knowledgebase (KBase) is a free, open source, software and data science platform designed to meet the grand challenge of systems biology: predicting and designing biological function.
This webinar will provide an overview of the KBase mission and user community, as well as a tour of the online platform and basic functionality. You’ll learn how KBase can support your research: Upload data, run analysis tools (Apps), share your analysis with collaborators, and publish your data and reproducible workflows. We’ll highlight a brand new feature that enables users to link environment and measurement data to sequencing data. You’ll also find out how KBase supports findable, accessible, interoperable, and reusable (FAIR) research by providing open, reproducible, shareable bioinformatics workflows.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Q&A for Australian BioCommons KBase Webinar [PDF]: Document containing answers to questions asked during the webinar and links to additional resources
Introduction to KBase: Australian BioCommons Webinar [PDF]: Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/tJ94i9gOJfU
The slides are also available as Google slides:
https://tinyurl.com/KBase-webinar-slides
Melissa Burke (melissa@biocommons.org.au)
Dow, Ellen (orcid: 0000-0002-2079-0260)
Wood-Charlson, Elisha (orcid: 0000-0001-9557-7715)
Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/records/5240578
https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: High performance bioinformatics: submitting your best NCMAS application
This record includes training materials associated with the Australian BioCommons webinar ‘High performance bioinformatics: submitting your best NCMAS application’. This webinar took place on 20 August 2021.
Bioinformaticians are increasingly turning to specialised compute infrastructure and...
Keywords: Computational Biology, Bioinformatics, High Performance Computing, HPC, NCMAS
WEBINAR: High performance bioinformatics: submitting your best NCMAS application
https://zenodo.org/records/5239883
https://dresa.org.au/materials/webinar-high-performance-bioinformatics-submitting-your-best-ncmas-application-ee80822f-74ac-41af-a5a4-e162c10e6d78
This record includes training materials associated with the Australian BioCommons webinar ‘High performance bioinformatics: submitting your best NCMAS application’. This webinar took place on 20 August 2021.
Bioinformaticians are increasingly turning to specialised compute infrastructure and efficient, scalable workflows as their research becomes more data intensive. Australian researchers that require extensive compute resources to process large datasets can apply for access to national high performance computing facilities (e.g. Pawsey and NCI) to power their research through the National Computational Merit Allocation Scheme (NCMAS). NCMAS is a competitive, merit-based scheme and requires applicants to carefully consider how the compute infrastructure and workflows will be applied.
This webinar provides life science researchers with insights into what makes a strong NCMAS application, with a focus on the technical assessment, and how to design and present effective and efficient bioinformatic workflows for the various national compute facilities. It will be followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
High performance bioinformatics: submitting your best NCMAS application - slides (PDF and PPTX): Slides presented during the webinar
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/HeFGjguwS0Y
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Computational Biology, Bioinformatics, High Performance Computing, HPC, NCMAS
WORKSHOP: RNA-Seq: reads to differential genes and pathways
This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.
Event description
RNA sequencing (RNA-seq) is a common method used to...
Keywords: Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
WORKSHOP: RNA-Seq: reads to differential genes and pathways
https://zenodo.org/records/7439804
https://dresa.org.au/materials/workshop-rna-seq-reads-to-differential-genes-and-pathways-5a384156-d3de-4d5d-9797-e689bf6592f8
This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.
Event description
RNA sequencing (RNA-seq) is a common method used to understand the differences in gene expression and molecular pathways between two or more groups. This workshop introduces the fundamental concepts of RNA sequencing experiments and will allow you to try out the analysis using data from a study of Williams-Beuren Syndrome, a rare disease.
In the first part of the workshop you will learn how to convert sequence reads into analysis ready count data. To do this we will use nf-core/rnaseq - a portable, scalable, reproducible and publicly available workflow on Pawsey Nimbus Cloud. In the second part of the workshop you will use the count data you created to identify differential genes and pathways using R/Rstudio. By the end of the workshop, you should be able to perform your own RNA-seq analysis for differential gene expression and pathway analysis!
This workshop is presented by the Australian BioCommons and Sydney Informatics Hub with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
RNAseq reads to differential genes and pathways - Additional Resources (PDF): Additional resources compiled by the Sydney Informatics Hub
rnaseq_DE_analysis_Day2.html: HTML version of code used on day 2 of the workshop
rnaseq_DE_analysis_Day2.Rmd: R Markdown version of code used on day 2 of the workshop
RNAseq reads to differential genes and pathways_Q_and_A (PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘RNA-seq: reads to differential gene expression workshop series’ developed by the Sydney Informatics Hub.
https://sydney-informatics-hub.github.io/training.RNAseq.series-quarto/
Melissa Burke (melissa@biocommons.org.au)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Beecroft, Sarah (orcid: 0000-0002-3935-2279)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
Introducing Computational Thinking
This workshop is for researchers at all career stages who want to understand the uses and the building blocks of computational thinking. This skill is useful for all kinds of problem solving, whether in real life or in computing.
The workshop will not teach computer programming per se. Instead...
Keywords: computational skills, data skills
Resource type: tutorial
Introducing Computational Thinking
https://griffithunilibrary.github.io/intro-computational-thinking/
https://dresa.org.au/materials/introducing-computational-thinking
This workshop is for researchers at all career stages who want to understand the uses and the building blocks of computational thinking. This skill is useful for all kinds of problem solving, whether in real life or in computing.
The workshop will not teach computer programming per se. Instead it will cover the thought processes involved should you want to learn to program.
s.stapleton@griffith.edu.au
Belinda Weaver
computational skills, data skills
WORKSHOP: RNA-Seq: reads to differential genes and pathways
This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.
Event description
RNA sequencing (RNA-seq) is a common method...
Keywords: Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
WORKSHOP: RNA-Seq: reads to differential genes and pathways
https://zenodo.org/record/7439804
https://dresa.org.au/materials/workshop-rna-seq-reads-to-differential-genes-and-pathways
This record includes training materials associated with the Australian BioCommons workshop ‘RNA-Seq: reads to differential genes and pathways’. This workshop took place over two, 3.5 hour sessions on 27 and 28 September 2022.
**Event description**
RNA sequencing (RNA-seq) is a common method used to understand the differences in gene expression and molecular pathways between two or more groups. This workshop introduces the fundamental concepts of RNA sequencing experiments and will allow you to try out the analysis using data from a study of Williams-Beuren Syndrome, a rare disease.
In the first part of the workshop you will learn how to convert sequence reads into analysis ready count data. To do this we will use nf-core/rnaseq - a portable, scalable, reproducible and publicly available workflow on Pawsey Nimbus Cloud. In the second part of the workshop you will use the count data you created to identify differential genes and pathways using R/Rstudio. By the end of the workshop, you should be able to perform your own RNA-seq analysis for differential gene expression and pathway analysis!
This workshop is presented by the Australian BioCommons and Sydney Informatics Hub with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
* Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
* Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
* RNAseq reads to differential genes and pathways - Additional Resources (PDF): Additional resources compiled by the Sydney Informatics Hub
* rnaseq_DE_analysis_Day2.html: HTML version of code used on day 2 of the workshop
* rnaseq_DE_analysis_Day2.Rmd: R Markdown version of code used on day 2 of the workshop
* RNAseq reads to differential genes and pathways_Q_and_A (PDF): Archive of questions and their answers from the workshop Slack Channel.
**Materials shared elsewhere:**
This workshop follows the tutorial ‘RNA-seq: reads to differential gene expression workshop series’ developed by the Sydney Informatics Hub.
https://sydney-informatics-hub.github.io/training.RNAseq.series-quarto/
Melissa Burke (melissa@biocommons.org.au)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Beecroft, Sarah (orcid: 0000-0002-3935-2279)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Bioinformatics, Analysis, Transcriptomics, RNA-seq, Workflows, Nextflow, nf-co.re
WEBINAR: KBase - A knowledge base for systems biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
Event description
Developed for bench biologists and bioinformaticians, The Department of Energy...
Keywords: Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: KBase - A knowledge base for systems biology
https://zenodo.org/record/5717580
https://dresa.org.au/materials/webinar-kbase-a-knowledge-base-for-systems-biology
This record includes training materials associated with the Australian BioCommons webinar ‘KBase - A knowledge base for systems biology’. This webinar took place on 22 September 2021.
**Event description**
Developed for bench biologists and bioinformaticians, The Department of Energy Systems Biology Knowledgebase (KBase) is a free, open source, software and data science platform designed to meet the grand challenge of systems biology: predicting and designing biological function.
This webinar will provide an overview of the KBase mission and user community, as well as a tour of the online platform and basic functionality. You’ll learn how KBase can support your research: Upload data, run analysis tools (Apps), share your analysis with collaborators, and publish your data and reproducible workflows. We’ll highlight a brand new feature that enables users to link environment and measurement data to sequencing data. You’ll also find out how KBase supports findable, accessible, interoperable, and reusable (FAIR) research by providing open, reproducible, shareable bioinformatics workflows.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Q&A for Australian BioCommons KBase Webinar [PDF]: Document containing answers to questions asked during the webinar and links to additional resources
- Introduction to KBase: Australian BioCommons Webinar [PDF]: Slides presented during the webinar
**Materials shared elsewhere:**
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/tJ94i9gOJfU
The slides are also available as Google slides:
https://tinyurl.com/KBase-webinar-slides
Melissa Burke (melissa@biocommons.org.au)
Dow, Ellen (orcid: 0000-0002-2079-0260)
Wood-Charlson, Elisha (orcid: 0000-0001-9557-7715)
Systems Biology, FAIR Research, Open Source Software, Metagenomics, Microbiology
WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/record/5240578
https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
- Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
**Materials shared elsewhere:**
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: High performance bioinformatics: submitting your best NCMAS application
This record includes training materials associated with the Australian BioCommons webinar ‘High performance bioinformatics: submitting your best NCMAS application’. This webinar took place on 20 August 2021.
Bioinformaticians are increasingly turning to specialised compute infrastructure and...
Keywords: Computational Biology, Bioinformatics, High Performance Computing, HPC, NCMAS
WEBINAR: High performance bioinformatics: submitting your best NCMAS application
https://zenodo.org/record/5239883
https://dresa.org.au/materials/webinar-high-performance-bioinformatics-submitting-your-best-ncmas-application
This record includes training materials associated with the Australian BioCommons webinar ‘High performance bioinformatics: submitting your best NCMAS application’. This webinar took place on 20 August 2021.
Bioinformaticians are increasingly turning to specialised compute infrastructure and efficient, scalable workflows as their research becomes more data intensive. Australian researchers that require extensive compute resources to process large datasets can apply for access to national high performance computing facilities (e.g. Pawsey and NCI) to power their research through the National Computational Merit Allocation Scheme (NCMAS). NCMAS is a competitive, merit-based scheme and requires applicants to carefully consider how the compute infrastructure and workflows will be applied.
This webinar provides life science researchers with insights into what makes a strong NCMAS application, with a focus on the technical assessment, and how to design and present effective and efficient bioinformatic workflows for the various national compute facilities. It will be followed by a short Q&A session.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- High performance bioinformatics: submitting your best NCMAS application - slides (PDF and PPTX): Slides presented during the webinar
**Materials shared elsewhere:**
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/HeFGjguwS0Y
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Computational Biology, Bioinformatics, High Performance Computing, HPC, NCMAS
Create a website resume
Written for the Qld Research Bazaar conference 2021, this self paced lesson breaks down how to use Github pages to make a resume, with a simple and basic template to start off with. It discusses how to use Markdown and minimum HTML to customize the template, and offers explanations on how the...
Keywords: personal development, website
Resource type: tutorial, guide
Create a website resume
https://amandamiotto.github.io/ResumeLesson/HowIMadeThis
https://dresa.org.au/materials/create-a-website-resume
Written for the Qld Research Bazaar conference 2021, this self paced lesson breaks down how to use Github pages to make a resume, with a simple and basic template to start off with. It discusses how to use Markdown and minimum HTML to customize the template, and offers explanations on how the components work together.
a.miotto@griffith.edu.au
Amanda Miotto
personal development, website
10 Reproducible Research things - Building Business Continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are...
Keywords: reproducibility, data management
Resource type: tutorial, video
10 Reproducible Research things - Building Business Continuity
https://guereslib.github.io/ten-reproducible-research-things/
https://dresa.org.au/materials/9-reproducible-research-things-building-business-continuity
The idea that you can duplicate an experiment and get the same conclusion is the basis for all scientific discoveries. Reproducible research is data analysis that starts with the raw data and offers a transparent workflow to arrive at the same results and conclusions. However not all studies are replicable due to lack of information on the process. Therefore, reproducibility in research is extremely important.
Researchers genuinely want to make their research more reproducible, but sometimes don’t know where to start and often don’t have the available time to investigate or establish methods on how reproducible research can speed up every day work. We aim for the philosophy “Be better than you were yesterday”. Reproducibility is a process, and we highlight there is no expectation to go from beginner to expert in a single workshop. Instead, we offer some steps you can take towards the reproducibility path following our Steps to Reproducible Research self paced program.
Video:
https://www.youtube.com/watch?v=bANTr9RvnGg
Tutorial:
https://guereslib.github.io/ten-reproducible-research-things/
a.miotto@griffith.edu.au; s.stapleton@griffith.edu.au; i.jennings@griffith.edu.au;
Amanda Miotto
Julie Toohey
Sharron Stapleton
Isaac Jennings
reproducibility, data management
masters
phd
ecr
researcher
support
Data Storytelling
Nowadays, more information created than our audience could possibly analyse on their own! A study by Stanford professor Chip Heath found that during the recall of speeches, 63% of people remember stories and how they made them feel, but only 5% remember a single statistic. So, you should convert...
Keywords: data storytelling, data visualisation
Data Storytelling
https://griffithunilibrary.github.io/data-storytelling/
https://dresa.org.au/materials/data-storytelling
Nowadays, more information created than our audience could possibly analyse on their own! A study by Stanford professor Chip Heath found that during the recall of speeches, 63% of people remember stories and how they made them feel, but only 5% remember a single statistic. So, you should convert your insights and discovery from data into stories to share with non-experts with a language they understand. But how?
This tutorial helps you construct stories that incite an emotional response and create meaning and understanding for the audience by applying data storytelling techniques.
m.yamaguchi@griffith.edu.au
a.miotto@griffith.edu.au
Masami Yamaguchi
Amanda Miotto
Brett Parker
data storytelling, data visualisation
support
masters
phd
researcher