Register training material
13 materials found

Authors: Coddington, Paul (orcid: 00...  or Price, Gareth (orcid: 0000-...  or Titus Tang 


WEBINAR: Where to go when your bioinformatics outgrows your compute

This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.

Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...

Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing

WEBINAR: Where to go when your bioinformatics outgrows your compute https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554 This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021. Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey.  We also describe bioinformatics and computing support services available to Australian researchers.  This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar. Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/hNTbngSc-W0 Melissa Burke (melissa@biocommons.org.au) Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WORKSHOP: Variant calling in humans, animals and plants with Galaxy

This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.

Variant calling in polyploid organisms, including humans, plants and animals, can help determine single...

Keywords: Variant calling, Genetic Variation Analysis, SNP annotation

WORKSHOP: Variant calling in humans, animals and plants with Galaxy https://dresa.org.au/materials/workshop-variant-calling-in-humans-animals-and-plants-with-galaxy-767f1816-1c06-478c-adf4-90b3b2d32a9c This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021. Variant calling in polyploid organisms, including humans, plants and animals, can help determine single or multi-variant contributors to a phenotype. Further, sexual reproduction (as compared to asexual) combines variants in a novel manner; this can be used to determine previously unknown variant - phenotype combinations but also to track lineage and lineage associated traits (GWAS studies), that all rely on highly accurate variant calling. The ability to confidently call variants in polyploid organisms is highly dependent on the balance between the frequency of variant observations against the background of non-variant observations, and even further compounded when one considers multi-variant positions within the genome. These are some of the challenges that will be explored in the workshop. In this online workshop we focused on the tools and workflows available for variant calling in polyploid organisms in Galaxy Australia. The workshop provided opportunities for hands-on experience using Freebayes for variant calling and SnpEff and GEMINI for variant annotation. The workshop made use of data from a case study on diagnosing a genetic disease however the tools and workflows are equally applicable to other polyploid organisms and biological questions. Access to all of the tools covered in this workshop was via Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.   Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): schedule for the workshop Variant calling - humans, animals, plants - slides (PPTX and PDF): slides used in the workshop   Materials shared elsewhere: The tutorial used in this workshop is available via the Galaxy Training Network. Wolfgang Maier, Bérénice Batut, Torsten Houwaart, Anika Erxleben, Björn Grüning, 2021 Exome sequencing data analysis for diagnosing a genetic disease (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html Online; accessed 25 May 2021 Melissa Burke (melissa@biocommons.org.au) Variant calling, Genetic Variation Analysis, SNP annotation
WEBINAR: Managing hands-on data analysis training with Galaxy

This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023.

Event description 

Looking for flexible, scalable, real-world solutions that enable data analysis skills to...

Keywords: Bioinformatics, Galaxy, Training, Training infrastructure

WEBINAR: Managing hands-on data analysis training with Galaxy https://dresa.org.au/materials/webinar-managing-hands-on-data-analysis-training-with-galaxy-6d3e8b36-69f2-4fec-9290-d5acd068624a This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023. Event description  Looking for flexible, scalable, real-world solutions that enable data analysis skills to be taught to anyone and anywhere?  Galaxy Australia, a national web service supporting 1000s of bioinformatics tools and workflows is a fantastic solution for training on bioinformatics concepts. Their "Training Infrastructure as a Service”, or TIaaS provides free compute and back-end support for data analysis training. It is paired with 100’s of easy-to-follow tutorials developed and maintained by the worldwide community on the Galaxy Training Network (GTN). TIaaS frees trainers from setting up and maintaining computational resources for their training events so that they can focus on student needs and learning outcomes This webinar will show you how to make the most of Galaxy Australia, TIaaS and the Galaxy Training Network for bioinformatics training. We’ll highlight all the nifty features you can use to plan, manage and deliver training to any size audience efficiently. Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Managing data analysis training with Galaxy_slides: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VNE0pF6Nqgw Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Galaxy, Training, Training infrastructure
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia

This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.

Event description 

Have you discovered a brilliant...

Keywords: Bioinformatics, Workflows, FAIR, Galaxy Australia

WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia https://dresa.org.au/materials/webinar-here-s-one-we-prepared-earlier-re-creating-bioinformatics-methods-and-workflows-with-galaxy-australia-134a8bf5-3801-421f-a454-e0f9020f4871 This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022. Event description  Have you discovered a brilliant bioinformatics workflow but you’re not quite sure how to use it? In this webinar we will introduce the power of Galaxy for construction and (re)use of reproducible workflows, whether building workflows from scratch, recreating them from published descriptions and/or extracting from Galaxy histories. Using an established bioinformatics method, we’ll show you how to: Use the workflows creator in Galaxy Australia  Build a workflow based on a published method Annotate workflows so that you (and others) can understand them  Make workflows finable and citable (important and very easy to do!) Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. GalaxyWorkflows_Slides (PDF): A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/IMkl6p7hkho Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, FAIR, Galaxy Australia
WEBINAR: Managing hands-on data analysis training with Galaxy

This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023.

Event description 

Looking for flexible, scalable, real-world solutions that enable data analysis skills to...

Keywords: Bioinformatics, Galaxy, Training, Training infrastructure

WEBINAR: Managing hands-on data analysis training with Galaxy https://dresa.org.au/materials/webinar-managing-hands-on-data-analysis-training-with-galaxy This record includes training materials associated with the Australian BioCommons webinar ‘Managing hands-on data analysis training with Galaxy’. This webinar took place on 25 July 2023. Event description  Looking for flexible, scalable, real-world solutions that enable data analysis skills to be taught to anyone and anywhere?  Galaxy Australia, a national web service supporting 1000s of bioinformatics tools and workflows is a fantastic solution for training on bioinformatics concepts. Their "Training Infrastructure as a Service”, or TIaaS provides free compute and back-end support for data analysis training. It is paired with 100’s of easy-to-follow tutorials developed and maintained by the worldwide community on the Galaxy Training Network (GTN). TIaaS frees trainers from setting up and maintaining computational resources for their training events so that they can focus on student needs and learning outcomes This webinar will show you how to make the most of Galaxy Australia, TIaaS and the Galaxy Training Network for bioinformatics training. We’ll highlight all the nifty features you can use to plan, manage and deliver training to any size audience efficiently. Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Managing data analysis training with Galaxy_slides: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/VNE0pF6Nqgw Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Galaxy, Training, Training infrastructure
WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia

This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022.

Event description 

Have you discovered a...

Keywords: Bioinformatics, Workflows, FAIR, Galaxy Australia

WEBINAR: Here's one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia https://dresa.org.au/materials/webinar-here-s-one-we-prepared-earlier-re-creating-bioinformatics-methods-and-workflows-with-galaxy-australia This record includes training materials associated with the Australian BioCommons webinar ‘Here’s one we prepared earlier: (re)creating bioinformatics methods and workflows with Galaxy Australia’. This webinar took place on 26 October 2022. **Event description**  Have you discovered a brilliant bioinformatics workflow but you’re not quite sure how to use it? In this webinar we will introduce the power of Galaxy for construction and (re)use of reproducible workflows, whether building workflows from scratch, recreating them from published descriptions and/or extracting from Galaxy histories. Using an established bioinformatics method, we’ll show you how to: * Use the workflows creator in Galaxy Australia  * Build a workflow based on a published method * Annotate workflows so that you (and others) can understand them  * Make workflows finable and citable (important and very easy to do!) Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** * Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. * Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. * GalaxyWorkflows_Slides (PDF): A PDF copy of the slides presented during the webinar. **Materials shared elsewhere:** A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/IMkl6p7hkho Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, FAIR, Galaxy Australia
WEBINAR: Where to go when your bioinformatics outgrows your compute

This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.

Bioinformatics analyses are often complex, requiring multiple software tools and specialised...

Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing

WEBINAR: Where to go when your bioinformatics outgrows your compute https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021. Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey.  We also describe bioinformatics and computing support services available to Australian researchers.  This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar - Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar. **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/hNTbngSc-W0 Melissa Burke (melissa@biocommons.org.au) Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WORKSHOP: Variant calling in humans, animals and plants with Galaxy

This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021.

Variant calling in polyploid organisms, including humans, plants and animals, can help determine...

Keywords: Variant calling, Genetic Variation Analysis, SNP annotation

WORKSHOP: Variant calling in humans, animals and plants with Galaxy https://dresa.org.au/materials/workshop-variant-calling-in-humans-animals-and-plants-with-galaxy This record includes training materials associated with the Australian BioCommons workshop ‘Variant calling in humans, animals and plants with Galaxy’. This workshop took place on 25 May 2021. Variant calling in polyploid organisms, including humans, plants and animals, can help determine single or multi-variant contributors to a phenotype. Further, sexual reproduction (as compared to asexual) combines variants in a novel manner; this can be used to determine previously unknown variant - phenotype combinations but also to track lineage and lineage associated traits (GWAS studies), that all rely on highly accurate variant calling. The ability to confidently call variants in polyploid organisms is highly dependent on the balance between the frequency of variant observations against the background of non-variant observations, and even further compounded when one considers multi-variant positions within the genome. These are some of the challenges that will be explored in the workshop. In this online workshop we focused on the tools and workflows available for variant calling in polyploid organisms in Galaxy Australia. The workshop provided opportunities for hands-on experience using Freebayes for variant calling and SnpEff and GEMINI for variant annotation. The workshop made use of data from a case study on diagnosing a genetic disease however the tools and workflows are equally applicable to other polyploid organisms and biological questions. Access to all of the tools covered in this workshop was via Galaxy Australia, an online platform for biological research that allows people to use computational data analysis tools and workflows without the need for programming experience. The materials are shared under a Creative Commons 4.0 International agreement unless otherwise specified and were current at the time of the event.   **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): schedule for the workshop - Variant calling - humans, animals, plants - slides (PPTX and PDF): slides used in the workshop **Materials shared elsewhere:** The tutorial used in this workshop is available via the Galaxy Training Network. Wolfgang Maier, Bérénice Batut, Torsten Houwaart, Anika Erxleben, Björn Grüning, 2021 Exome sequencing data analysis for diagnosing a genetic disease (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/variant-analysis/tutorials/exome-seq/tutorial.html Online; accessed 25 May 2021 Melissa Burke (melissa@biocommons.org.au) Variant calling, Genetic Variation Analysis, SNP annotation
Deep Learning for Natural Language Processing

This workshop is designed to be instructor led and consists of two parts.
Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset.
Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for...

Keywords: Deep learning, NLP, Machine learning

Resource type: presentation, tutorial

Deep Learning for Natural Language Processing https://dresa.org.au/materials/deep-learning-for-natural-language-processing This workshop is designed to be instructor led and consists of two parts. Part 1 consists of a lecture-demo about text processing and a hands-on session for attendees to learn how to clean a dataset. Part 2 consists of a lecture introducing Recurrent Neural Networks and a hands-on session for attendees to train their own RNN. The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop introduces natural language as data for deep learning. We discuss various techniques and software packages (e.g. python strings, RegEx, NLTK, Word2Vec) that help us convert, clean, and formalise text data “in the wild” for use in a deep learning model. We then explore the training and testing of a Recurrent Neural Network on the data to complete a real world task. We will be using TensorFlow v2 for this purpose. datascienceplatform@monash.edu Deep learning, NLP, Machine learning
Getting Started with Deep Learning

This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning...

Keywords: Deep learning, Machine learning

Resource type: presentation

Getting Started with Deep Learning https://dresa.org.au/materials/getting-started-with-deep-learning This lecture provides a high level overview of how you could get started with developing deep learning applications. It introduces deep learning in a nutshell and then provides advice relating to the concepts and skill sets you would need to know and have in order to build a deep learning application. The lecture also provides pointers to various resources you could use to gain a stronger foothold in deep learning. This lecture is targeted at researchers who may be complete beginners in machine learning, deep learning, or even with programming, but who would like to get into the space to build AI systems hands-on. datascienceplatform@monash.edu Deep learning, Machine learning
Semi-Supervised Deep Learning

Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled...

Keywords: Deep learning, Machine learning, semi-supervised

Resource type: presentation, tutorial

Semi-Supervised Deep Learning https://dresa.org.au/materials/semi-supervised-deep-learning Modern deep neural networks require large amounts of labelled data to train. Obtaining the required labelled data is often an expensive and time consuming process. Semi-supervised deep learning involves the use of various creative techniques to train deep neural networks on partially labelled data. If successful, it allows better training of a model despite the limited amount of labelled data available. This workshop is designed to be instructor led and covers various semi-supervised learning techniques available in the literature. The workshop consists of a lecture introducing at a high level a selection of techniques that are suitable for semi-supervised deep learning. We discuss how these techniques can be implemented and the underlying assumptions they require. The lecture is followed by a hands-on session where attendees implement a semi-supervised learning technique to train a neural network. We observe and discuss the changing performance and behaviour of the network as varying degrees of labelled and unlabelled data is provided to the network during training. datascienceplatform@monash.edu Deep learning, Machine learning, semi-supervised
Introduction to Deep Learning and TensorFlow

This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise.
Part 1 - Introduction to Deep Learning and TensorFlow
Part 2 - Introduction to Convolutional Neural Networks
The Powerpoints contain...

Keywords: Deep learning, convolutional neural network, tensorflow, Machine learning

Resource type: presentation, tutorial

Introduction to Deep Learning and TensorFlow https://dresa.org.au/materials/introduction-to-deep-learning-and-tensorflow This workshop is intended to run as an instructor guided live event and consists of two parts. Each part consists of a lecture and a hands-on coding exercise. Part 1 - Introduction to Deep Learning and TensorFlow Part 2 - Introduction to Convolutional Neural Networks The Powerpoints contain the lecture slides, while the Jupyter notebooks (.ipynb) contain the hands-on coding exercises. This workshop is an introduction to how deep learning works and how you could create a neural network using TensorFlow v2. We start by learning the basics of deep learning including what a neural network is, how information passes through the network, and how the network learns from data through the automated process of gradient descent. Workshop attendees would build, train and evaluate a neural network using a cloud GPU (Google Colab). In part 2, we look at image data and how we could train a convolution neural network to classify images. Workshop attendees will extend their knowledge from the first part to design, train and evaluate this convolutional neural network. datascienceplatform@monash.edu Deep learning, convolutional neural network, tensorflow, Machine learning
WEBINAR: Getting started with deep learning

This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021.

Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces...

Keywords: Deep learning, Bioinformatics, Machine learning

Resource type: video, presentation

WEBINAR: Getting started with deep learning https://dresa.org.au/materials/webinar-getting-started-with-deep-learning This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with deep learning’. This webinar took place on 21 July 2021. Are you wondering what deep learning is and how it might be useful in your research? This high level overview introduces deep learning ‘in a nutshell’ and provides tips on which concepts and skills you will need to know to build a deep learning application. The presentation also provides pointers to various resources you can use to get started in deep learning. The webinar is followed by a short Q&A session. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Getting Started with Deep Learning - Slides (PDF): Slides used in the presentation Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/I1TmpnZUuiQ Melissa Burke (melissa@biocommons.org.au) Deep learning, Bioinformatics, Machine learning