WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/records/5240578
https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WORKSHOP: Refining genome annotations with Apollo
This record includes training materials associated with the Australian BioCommons workshop ‘Refining genome annotations with Apollo’. This workshop took place on 17 November 2021.
Workshop description
Genome annotation is crucial to defining the function of genomic sequences. This process...
Keywords: Apollo Software, Bioinformatics, Analysis, Workflows, Genomics, Genome annotation
WORKSHOP: Refining genome annotations with Apollo
https://zenodo.org/records/5781812
https://dresa.org.au/materials/workshop-refining-genome-annotations-with-apollo-d8f95fb3-7dc4-40e0-87d5-e7a4b2ceaf16
This record includes training materials associated with the Australian BioCommons workshop ‘Refining genome annotations with Apollo’. This workshop took place on 17 November 2021.
Workshop description
Genome annotation is crucial to defining the function of genomic sequences. This process typically involves a round of automated annotation followed by manual curation. Manual curation allows you to visualise your annotations so you can understand what your organism looks like, and then to manually refine these annotations along with any additional data you might have. This process is typically performed collaboratively as part of a team effort.
Apollo is a popular tool for facilitating real-time collaborative, manual curation and genome annotation editing. In this workshop we will learn how to use Apollo to refine genome annotations using example data from an E. coli strain. We’ll focus on the basics like getting data into Apollo, viewing evidence tracks, editing and adding structural and functional annotation, visualising the results and collaborating on genome annotations.
This workshop made use of a training instance of the new Australian Apollo Service. This service enables Australian-based research groups and consortia to access Apollo and host genome assembly and supporting evidence files for free. This service has been made possible by The Australian BioCommons and partners at QCIF and Pawsey. To learn more about the Australian Apollo Service you can watch the Australian Apollo Launch Webinar.
This workshop was presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) .
The Australian Apollo Service is operated by QCIF and underpinned by computational resources provided by the Pawsey Supercomputing Research Centre and receives NCRIS funding through Bioplatforms Australia and the Australian Research Data Commons as well as Queensland Government RICF funding.
The training materials presented in this workshop were developed by Anthony Bretaudeau, Helena Rasche, Nathan Dunn, Mateo Boudet for the Galaxy Training Network. Helena and Anthony are part of the Gallantries project which is supported by Erasmus Programme of the European Union.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
2021 Apollo Training Intro (PPTX and PDF): Slides used to introduce the Australian Apollo Service
Augustus.gff3 (gff3): E.coli derived data file used in the tutorial. Data was obtained from the Galaxy Training Network and pre-processed using Galaxy Australia.
Blastp_vs_swissprot.gff3: E.coli derived data file used in the tutorial. Data was obtained from the Galaxy Training Network and pre-processed using Galaxy Australia.
Materials shared elsewhere:
This workshop is based on the tutorial ‘Refining genome annotations with Apollo’ which was developed for the Galaxy Training Network.
Anthony Bretaudeau, Helena Rasche, Nathan Dunn, Mateo Boudet, Erasmus Programme, 2021 Refining Genome Annotations with Apollo (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/genome-annotation/tutorials/apollo/tutorial.html Online; accessed Wed Dec 15 2021
See also:
Batut et al., 2018 Community-Driven Data Analysis Training for Biology Cell Systems 10.1016/j.cels.2018.05.012
Melissa Burke (melissa@biocommons.org.au)
Bretaudeau, Anthony (orcid: 0000-0003-0914-2470)
Rasche, Helena (orcid: 0000-0001-9760-8992)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Thang, Mike
Lee, Justin
Apollo Software, Bioinformatics, Analysis, Workflows, Genomics, Genome annotation
A hands on introduction to Large Language Models like Bing Chat and ChatGPT
Event run 7 June at the MQ Incubator. Event description:
A two-hour hands-on workshop giving a brief history of the last 4 months of development of "Generative AI."
These tools, these Large Language Models, offer present promise and peril -- disruption -- to ways of working and of...
Keywords: Large Language Model, ChatGPT
A hands on introduction to Large Language Models like Bing Chat and ChatGPT
https://osf.io/rd24y/
https://dresa.org.au/materials/a-hands-on-introduction-to-large-language-models-like-bing-chat-and-chatgpt
Event run 7 June at the MQ Incubator. Event description:
A two-hour hands-on workshop giving a brief history of the last 4 months of development of "Generative AI."
These tools, these Large Language Models, offer present promise and peril -- disruption -- to ways of working and of learning. Outside the "hype," these tools are "calculators for words" and allow the same manipulation and reflection of a user's words as a calculator offers for a user's numbers.
The workshop will guide users into using various free and paid tools, and the effective use of Large Language Models through chain of thought prompting.
Remember: a LLM is "Always confident and usually correct."
OSF Description (LLM generated):
This two-hour workshop provides a comprehensive introduction to the world of Large Language Models (LLMs), focusing on the recent advancements in Generative AI. Participants will gain insights into the development and functionality of prominent LLMs such as Bing Chat and ChatGPT. The workshop will delve into the concept of LLMs as "calculators for words," highlighting their potential to revolutionize ways of working and learning.
The session will explore the principles of Prompt Engineering and Transactional Prompting, demonstrating how consistent prompts can yield reliable and reproducible results. Participants will also learn about the practical applications of LLMs, including editing and proofreading papers, generating technical documentation, recipe ideation, and more.
The workshop emphasizes the importance of understanding the terms of use and the responsibilities that come with using these powerful AI tools. By the end of the session, participants will be equipped with the knowledge and skills to effectively use LLMs in various contexts, guided by the mantra that a LLM is "Always confident and usually correct."
Brian Ballsun-Stanton (brian.ballsun-stanton@mq.edu.au)
Brian Ballsun-Stanton
Large Language Model, ChatGPT
researcher
Managing Active Research Data
In this train-the-trainer workshop, we will be exploring and discussing methods for active data management.
Participants will become familiar with cloud storage and associated tools and services for managing active research data. Learn how to organise, maintain, store and analyse active data,...
Keywords: RDM Training, CloudStor, cloud
Resource type: lesson
Managing Active Research Data
https://doi.org/10.5281/zenodo.7259746
https://dresa.org.au/materials/managing-active-research-data
In this train-the-trainer workshop, we will be exploring and discussing methods for active data management.
Participants will become familiar with cloud storage and associated tools and services for managing active research data. Learn how to organise, maintain, store and analyse active data, and understand safe and secure ways of sharing and storing data.
Topics such as cloud storage, collaborative editing, versioning and data sharing will be discussed and demonstrated.
Sara King
Sara King
Brian Ballsun-Stanton
RDM Training, CloudStor, cloud
phd
support
masters
ecr
researcher
WORKSHOP: Refining genome annotations with Apollo
This record includes training materials associated with the Australian BioCommons workshop ‘Refining genome annotations with Apollo’. This workshop took place on 17 November 2021.
Workshop description
Genome annotation is crucial to defining the function of genomic sequences. This...
Keywords: Apollo Software, Bioinformatics, Analysis, Workflows, Genomics, Genome annotation
WORKSHOP: Refining genome annotations with Apollo
https://zenodo.org/record/5781812
https://dresa.org.au/materials/workshop-refining-genome-annotations-with-apollo
This record includes training materials associated with the Australian BioCommons workshop ‘Refining genome annotations with Apollo’. This workshop took place on 17 November 2021.
**Workshop description**
Genome annotation is crucial to defining the function of genomic sequences. This process typically involves a round of automated annotation followed by manual curation. Manual curation allows you to visualise your annotations so you can understand what your organism looks like, and then to manually refine these annotations along with any additional data you might have. This process is typically performed collaboratively as part of a team effort.
Apollo is a popular tool for facilitating real-time collaborative, manual curation and genome annotation editing. In this workshop we will learn how to use Apollo to refine genome annotations using example data from an E. coli strain. We’ll focus on the basics like getting data into Apollo, viewing evidence tracks, editing and adding structural and functional annotation, visualising the results and collaborating on genome annotations.
This workshop made use of a training instance of the new Australian Apollo Service. This service enables Australian-based research groups and consortia to access Apollo and host genome assembly and supporting evidence files for free. This service has been made possible by The Australian BioCommons and partners at QCIF and Pawsey. To learn more about the Australian Apollo Service you can watch the Australian Apollo Launch Webinar.
This workshop was presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) .
The Australian Apollo Service is operated by QCIF and underpinned by computational resources provided by the Pawsey Supercomputing Research Centre and receives NCRIS funding through Bioplatforms Australia and the Australian Research Data Commons as well as Queensland Government RICF funding.
The training materials presented in this workshop were developed by Anthony Bretaudeau, Helena Rasche, Nathan Dunn, Mateo Boudet for the Galaxy Training Network. Helena and Anthony are part of the Gallantries project which is supported by Erasmus Programme of the European Union.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Schedule (PDF): A breakdown of the topics and timings for the workshop
- 2021 Apollo Training Intro (PPTX and PDF): Slides used to introduce the Australian Apollo Service
- Augustus.gff3 (gff3): E.coli derived data file used in the tutorial. Data was obtained from the Galaxy Training Network and pre-processed using Galaxy Australia.
- Blastp_vs_swissprot.gff3: E.coli derived data file used in the tutorial. Data was obtained from the Galaxy Training Network and pre-processed using Galaxy Australia.
**Materials shared elsewhere:**
This workshop is based on the tutorial ‘Refining genome annotations with Apollo’ which was developed for the Galaxy Training Network.
Anthony Bretaudeau, Helena Rasche, Nathan Dunn, Mateo Boudet, Erasmus Programme, 2021 Refining Genome Annotations with Apollo (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/genome-annotation/tutorials/apollo/tutorial.html Online; accessed Wed Dec 15 2021
See also:
Batut et al., 2018 Community-Driven Data Analysis Training for Biology Cell Systems 10.1016/j.cels.2018.05.012
Melissa Burke (melissa@biocommons.org.au)
Bretaudeau, Anthony (orcid: 0000-0003-0914-2470)
Rasche, Helena (orcid: 0000-0001-9760-8992)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Thang, Mike
Lee, Justin
Apollo Software, Bioinformatics, Analysis, Workflows, Genomics, Genome annotation
WEBINAR: Where to go when your bioinformatics outgrows your compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised...
Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WEBINAR: Where to go when your bioinformatics outgrows your compute
https://zenodo.org/record/5240578
https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute
This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.
Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey. We also describe bioinformatics and computing support services available to Australian researchers.
This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar
- Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar.
**Materials shared elsewhere:**
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/hNTbngSc-W0
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Chew, Tracy (orcid: 0000-0001-9529-7705)
Sadsad, Rosemarie (orcid: 0000-0003-2488-953X)
Coddington, Paul (orcid: 0000-0003-1336-9686)
Gladman, Simon (orcid: 0000-0002-6100-4385)
Edberg, Roger
Shaikh, Javed
Cytowski, Maciej (orcid: 0000-0002-0007-0979)
Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
Research Data Management (RDM) Online Orientation Module (Macquarie University)
This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata,...
Keywords: research data, data management, FAIR data, training
Resource type: quiz, activity, other
Research Data Management (RDM) Online Orientation Module (Macquarie University)
https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0
https://dresa.org.au/materials/macquarie-university-research-data-management-rdm-online
This is a self-paced, guided orientation to the essential elements of Research Data Management. It is available for others to use and modify.
The course introduces the following topics: data policies, data sensitivity, data management planning, storage and security, organisation and metadata, benefits of data sharing, licensing, repositories, and best practice including the FAIR principles.
Embedded activities and examples help extend learner experience and awareness.
The course was designed to assist research students and early career researchers in complying with policies and legislative requirements, understand safe data practices, raise awareness of the benefits of data curation and data sharing (efficiency and impact) and equip them with the required knowledge to plan their data management early in their projects.
This course is divided into four sections
1. Crawl - What is Research Data and why care for it? Policy and legislative requirements. The Research Data Life-cycle. Data Management Planning (~30 mins)
2. Walk - Data sensitivity, identifiability, storage, and security (~60 mins)
3. Run - Record keeping, data retention, file naming, folder structures, version control, metadata, data sharing, open data, licences, data repositories, data citation, and ethics (~75 mins)
4. Jump - Best practice FAIR data principles (~45 mins)
5. Fight - Review - a quiz designed to review and reinforce knowledge (~15 mins)
https://rise.articulate.com/share/-AWqSPaEI_jTbHwzQHdmQ43R50edrCl0 *
*Password: "FAIR"
*Password: "FAIR"
Any queries or suggestions for course improvement can be directed to the Macquarie University Research Integrity Team: Dr Paul Sou (paul.sou@mq.edu.au) or Dr Shannon Smith (shannon.smith@mq.edu.au). Scorm files can be made available upon request.
Macquarie University
Queensland University of Technology
Shannon Smith
Jennifer Rowland
Mark Hooper
Paul Sou
Vladimir Bubalo
Brian Ballsun-Stanton
research data, data management, FAIR data, training