Register training material
7 materials found

Authors: Coddington, Paul (orcid: 00...  or Bourke, Caitlin (orcid: 000...  or Matthias Liffers 


WEBINAR: Where to go when your bioinformatics outgrows your compute

This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.

Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute...

Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing

WEBINAR: Where to go when your bioinformatics outgrows your compute https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute-7a5a0ff8-8f4f-4fd0-af20-a88d515a6554 This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021. Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey.  We also describe bioinformatics and computing support services available to Australian researchers.  This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar. Materials shared elsewhere: A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/hNTbngSc-W0 Melissa Burke (melissa@biocommons.org.au) Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022. **Event description** Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: - Spreadsheets, organising data and first steps with R - Manipulating and analysing data with dplyr - Data visualisation - Summarized experiments and getting started with Bioconductor This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop - Recommended resources (PDF): A list of resources recommended by trainers and participants - Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. **Materials shared elsewhere:** This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WEBINAR: Where to go when your bioinformatics outgrows your compute

This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021.

Bioinformatics analyses are often complex, requiring multiple software tools and specialised...

Keywords: Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing

WEBINAR: Where to go when your bioinformatics outgrows your compute https://dresa.org.au/materials/webinar-where-to-go-when-your-bioinformatics-outgrows-your-compute This record includes training materials associated with the Australian BioCommons webinar ‘Where to go when your bioinformatics outgrows your compute’. This webinar took place on 19 August 2021. Bioinformatics analyses are often complex, requiring multiple software tools and specialised compute resources. “I don’t know what compute resources I will need”, “My analysis won’t run and I don’t know why” and "Just getting it to work" are common pain points for researchers. In this webinar, you will learn how to understand the compute requirements for your bioinformatics workflows. You will also hear about ways of accessing compute that suits your needs as an Australian researcher, including Galaxy Australia, cloud and high-performance computing services offered by the Australian Research Data Commons, the National Compute Infrastructure (NCI) and Pawsey.  We also describe bioinformatics and computing support services available to Australian researchers.  This webinar was jointly organised with the Sydney Informatics Hub at the University of Sydney. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Where to go when your bioinformatics outgrows your compute - slides (PDF and PPTX): Slides presented during the webinar - Australian research computing resources cheat sheet (PDF): A list of resources and useful links mentioned during the webinar. **Materials shared elsewhere:** A recording of the webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/hNTbngSc-W0 Melissa Burke (melissa@biocommons.org.au) Computational Biology, Bioinformatics, High performance computing, HPC, Galaxy Australia, Nectar Research Cloud, Pawsey Supercomputing Centre, NCI, NCMAS, Cloud computing
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

Keywords: training material, FAIR data, research data, data management, FAIR

Resource type: presentation, quiz, activity

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. ARDC Contact us: https://ardc.edu.au/contact-us/ training material, FAIR data, research data, data management, FAIR phd ecr researcher support
Software publishing, licensing, and citation

A short presentation for reuse includes speaker notes.

Making software citable using a code repository, an ORCID and a licence.

Cite as
Liffers, Matthias. (2021, July 12). Software publishing, licensing, and citation. Zenodo. https://doi.org/10.5281/zenodo.5091717

Keywords: software citation, software publishing, software registry, software repository, research software

Resource type: presentation

Software publishing, licensing, and citation https://dresa.org.au/materials/software-publishing-licensing-and-citation A short presentation for reuse includes speaker notes. Making software citable using a code repository, an ORCID and a licence. **Cite as** Liffers, Matthias. (2021, July 12). Software publishing, licensing, and citation. Zenodo. https://doi.org/10.5281/zenodo.5091717 ARDC Contact us: https://ardc.edu.au/contact-us/ software citation, software publishing, software registry, software repository, research software phd ecr researcher support
ARDC Guide to making Software Citable

A short guide to making software citable using a code repository, an ORCID and a licence.

Cite as
Liffers, Matthias, & Honeyman, Tom. (2021). ARDC Guide to making software citable. Zenodo. https://doi.org/10.5281/zenodo.5003989

Keywords: software citation, software publishing, software registry, software repository, research software

Resource type: guide

ARDC Guide to making Software Citable https://dresa.org.au/materials/ardc-guide-to-making-software-citable A short guide to making software citable using a code repository, an ORCID and a licence. **Cite as** Liffers, Matthias, & Honeyman, Tom. (2021). ARDC Guide to making software citable. Zenodo. https://doi.org/10.5281/zenodo.5003989 ARDC Contact us: https://ardc.edu.au/contact-us/ software citation, software publishing, software registry, software repository, research software phd ecr researcher support