WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023.Event descriptionAnalysis and interpretation of single cell RNAseq (scRNAseq) data requires...
Keywords: bioinformatics, transcriptomics, single cell RNA-seq, Seurat, R statistical software
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/10042919
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-6a1126cf-7105-43ec-bf55-7c492f758301
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023.Event descriptionAnalysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data. We will discuss the 'why' behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.This workshop is presented by the Australian BioCommons, Queensland Cyber Infrastructure Foundation (QCIF) and the Monash Genomics and Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.Lead trainers: Sarah Williams, Adele Barugahare, Paul Harrison, Laura Perlaza JimenezFacilitators: Nick Matigan, Valentine Murigneux, Magdalena (Magda) AntczakInfrastructure provision: Uwe WinterCoordinator: Melissa BurkeTraining materialsMaterials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.Files and materials included in this record:Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshopMaterials shared elsewhere:This workshop follows the tutorial 'scRNAseq Analysis in R with Seurat'https://swbioinf.github.io/scRNAseqInR_Doco/index.htmlSlides used to introduce key topics are available via GitHubhttps://github.com/swbioinf/scRNAseqInR_Doco/tree/main/slidesThis material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Perlaza Jimenez, Laura (orcid: 0000-0002-8511-1134)
Matigan, Nicholas
Murigneux, Valentine (orcid: 0000-0002-1235-9462)
Antczak, Magdalena (orcid: 0000-0003-1503-1849)
Winter, Uwe
bioinformatics, transcriptomics, single cell RNA-seq, Seurat, R statistical software
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data...
Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/records/7072910
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r-4f60b82d-2f1e-4021-9569-6955878dd945
This record includes training materials associated with the Australian BioCommons workshop ‘Single cell RNAseq analysis in R’. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.
We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.
This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
scRNAseq_Slides (PDF): Slides used to introduce topics
scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop
scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants
scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’
https://swbioinf.github.io/scRNAseqInR_Doco/index.html
This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.
It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Mehdi, Ahmed (orcid: 0000-0002-9300-2341)
Matigan, Nick
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Whitfield, Holly (orcid: 0000-0002-7282-387X)
Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/records/5781776
https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor-8399bf0d-1e9e-48f3-a840-3f70f23254bb
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
Materials shared elsewhere:
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
ARDC 2023 Skills Summit - Frameworks Panel Discussion (Day 2 - February 10, 2023)
Presentations to the ARDC Skills Summit 2023 (Panel Talks Day 2 - February 10th, 2023)
Dr Peter Derbyshire - Unpacking the ATSE report - Our STEM skilled future and the need for a national skills taxonomy
Anthony Beitz - Applying Skills Framework for the Information Age (SFIA) within DSTG
Kate...
Keywords: training material, research, training, skills, framework, sfia, eresearch, skills frameworks, skills taxonomies, skills classifications, skill shortages, transferrable skills, applying SFIA, training gaps, workforce requirements, job requirements, DReSA, digital literacy, applying skills frameworks, Australian Skills Classification framework, ASC
ARDC 2023 Skills Summit - Frameworks Panel Discussion (Day 2 - February 10, 2023)
https://zenodo.org/records/7711287
https://dresa.org.au/materials/ardc-2023-skills-summit-frameworks-panel-discussion-day-2-february-10-2023-c00730b5-3444-4ccd-8f8f-9ae8ec3dfbe6
Presentations to the ARDC Skills Summit 2023 (Panel Talks Day 2 - February 10th, 2023)
Dr Peter Derbyshire - Unpacking the ATSE report - Our STEM skilled future and the need for a national skills taxonomy
Anthony Beitz - Applying Skills Framework for the Information Age (SFIA) within DSTG
Kate Morrison - A national skills taxonomy - Australian Skills Classification (ASC)
Kathryn Unsworth - ARDC Digital Research Capabilities & Skills Framework
Peter Embelton - Enhancing skills uplift for researchers through the alignment and implementation of skills frameworks
These presentations cover skills frameworks/taxonomies/classifications, skill shortages, transferrable skills, applying SFIA (Skills Framework for the Information Age), Australian Skills Classification framework, training gaps, workforce/job requirements, Digital Research Skills Australasia (DReSA), digital literacy and applying skills frameworks.
contact@ardc.edu.au
Derbyshire, Peter
Beitz, Anthony (orcid: 0000-0002-2071-2852)
Morrison, Kate
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
Embelton, Peter
training material, research, training, skills, framework, sfia, eresearch, skills frameworks, skills taxonomies, skills classifications, skill shortages, transferrable skills, applying SFIA, training gaps, workforce requirements, job requirements, DReSA, digital literacy, applying skills frameworks, Australian Skills Classification framework, ASC
23 (research data) Things
23 (research data) things is a set of training materials exploring research data management. Each of the 23 things offers a variety of learning opportunities with activities at three levels of complexity:
- Getting started
- Learn more
- Challenge me
All resources used in the program are online...
Keywords: research data management, training material
23 (research data) Things
https://zenodo.org/records/3955524
https://dresa.org.au/materials/23-research-data-things-793872d2-c221-4cd6-91be-11a313c74b78
23 (research data) things is a set of training materials exploring research data management. Each of the 23 things offers a variety of learning opportunities with activities at three levels of complexity:
* Getting started
* Learn more
* Challenge me
All resources used in the program are online and free to use and reuse under a Creative Commons Attribution 4.0 International licence. You could use all of them as a self-paced course, or choose components to integrate into your own course.
The 23 things are designed to build knowledge as the program progresses, so if you’re new to the world of research data management, we suggest you start with things 1-3 and then decide where you want to go from there.
These materials supported an international community-based training program delivered in 2016 by the Australian National Data Service.
This release migrates these materials to a GitHub repository for continued maintenance. Some updates were made to material that was outdated.
We welcome contributions and suggestions via GitHub Issue or Pull Request.
contact@ardc.edu.au
Liffers, Matthias (orcid: 0000-0002-3639-2080)
Stokes, Liz (orcid: 0000-0002-2973-5647)
Burton, Nichola (orcid: 0000-0003-4470-4846)
Kelly, Andrew (orcid: 0000-0002-5377-5526)
Honeyman, Tom (orcid: 0000-0001-9448-4023)
Brownlee, Rowan (orcid: 0000-0002-1955-1262)
Levett, Kerry (orcid: 0000-0001-5963-0195)
Brady, Catherine (orcid: 0000-0002-7919-7592)
research data management, training material
ARDC FAIR Data 101 self-guided
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the...
Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
ARDC FAIR Data 101 self-guided
https://zenodo.org/records/5094034
https://dresa.org.au/materials/ardc-fair-data-101-self-guided-2d794a84-f0ff-4e11-a39c-fa8ea481e097
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub.
contact@ardc.edu.au
Stokes, Liz (orcid: 0000-0002-2973-5647)
Liffers, Matthias (orcid: 0000-0002-3639-2080)
Burton, Nichola (orcid: 0000-0003-4470-4846)
Martinez, Paula A. (orcid: 0000-0002-8990-1985)
Simons, Natasha (orcid: 0000-0003-0635-1998)
Russell, Keith (orcid: 0000-0001-5390-2719)
McCafferty, Siobhann (orcid: 0000-0002-2491-0995)
Ferrers, Richard (orcid: 0000-0002-2923-9889)
McEachern, Steve (orcid: 0000-0001-7848-4912)
Barlow, Melanie (orcid: 0000-0002-3956-5784)
Brady, Catherine (orcid: 0000-0002-7919-7592)
Brownlee, Rowan (orcid: 0000-0002-1955-1262)
Honeyman, Tom (orcid: 0000-0001-9448-4023)
Quiroga, Maria del Mar (orcid: 0000-0002-8943-2808)
training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
ARDC 2023 Skills Summit - Frameworks Panel Discussion (Day 2 - February 10, 2023)
Presentations to the ARDC Skills Summit 2023 (Panel Talks Day 2 - February 10th, 2023)
Dr Peter Derbyshire - Unpacking the ATSE report - Our STEM skilled future and the need for a national skills taxonomy
Anthony Beitz - Applying Skills Framework for the Information Age (SFIA) within DSTG
Kate...
Keywords: training material, research, training, skills, framework, sfia, eresearch, skills frameworks, skills taxonomies, skills classifications, skill shortages, transferrable skills, applying SFIA, training gaps, workforce requirements, job requirements, DReSA, digital literacy, applying skills frameworks, Australian Skills Classification framework, ASC
ARDC 2023 Skills Summit - Frameworks Panel Discussion (Day 2 - February 10, 2023)
https://zenodo.org/record/7711287
https://dresa.org.au/materials/ardc-2023-skills-summit-frameworks-panel-discussion-day-2-february-10-2023
Presentations to the ARDC Skills Summit 2023 (Panel Talks Day 2 - February 10th, 2023)
Dr Peter Derbyshire - Unpacking the ATSE report - Our STEM skilled future and the need for a national skills taxonomy
Anthony Beitz - Applying Skills Framework for the Information Age (SFIA) within DSTG
Kate Morrison - A national skills taxonomy - Australian Skills Classification (ASC)
Kathryn Unsworth - ARDC Digital Research Capabilities & Skills Framework
Peter Embelton - Enhancing skills uplift for researchers through the alignment and implementation of skills frameworks
These presentations cover skills frameworks/taxonomies/classifications, skill shortages, transferrable skills, applying SFIA (Skills Framework for the Information Age), Australian Skills Classification framework, training gaps, workforce/job requirements, Digital Research Skills Australasia (DReSA), digital literacy and applying skills frameworks.
contact@ardc.edu.au
Derbyshire, Peter
Beitz, Anthony (orcid: 0000-0002-2071-2852)
Morrison, Kate
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
Embelton, Peter
training material, research, training, skills, framework, sfia, eresearch, skills frameworks, skills taxonomies, skills classifications, skill shortages, transferrable skills, applying SFIA, training gaps, workforce requirements, job requirements, DReSA, digital literacy, applying skills frameworks, Australian Skills Classification framework, ASC
WORKSHOP: Single cell RNAseq analysis in R
This record includes training materials associated with the Australian BioCommons workshop Single cell RNAseq analysis in R. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
Event description
Analysis and interpretation of single cell RNAseq (scRNAseq) data...
Keywords: Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Single cell RNAseq analysis in R
https://zenodo.org/record/7072910
https://dresa.org.au/materials/workshop-single-cell-rnaseq-analysis-in-r
This record includes training materials associated with the Australian BioCommons workshop Single cell RNAseq analysis in R. This workshop took place over two, 3.5 hour sessions on 22 and 3 August 2022.
**Event description**
Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data.
We will discuss the ‘why’ behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data.
This workshop is presented by the Australian BioCommons and Queensland Cyber Infrastructure Foundation (QCIF) with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
* Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
* Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
* scRNAseq_Slides (PDF): Slides used to introduce topics
* scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop
* scRNAseq_Resources (PDF): A list of resources recommended by trainers and participants
* scRNAseq_QandA(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘scRNAseq Analysis in R with Seurat’
https://swbioinf.github.io/scRNAseqInR_Doco/index.html
This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat.
It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Melissa Burke (melissa@biocommons.org.au)
Williams, Sarah
Mehdi, Ahmed (orcid: 0000-0002-9300-2341)
Matigan, Nick
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Morgan, Steven (orcid: 0000-0001-6038-6126)
Whitfield, Holly (orcid: 0000-0002-7282-387X)
Bioinformatics, Analysis, Transcriptomics, R software, Single cell RNAseq, scRNAseq
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
Workshop description
Explore the many useful functions that the Bioconductor...
Keywords: R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
WORKSHOP: Working with genomics sequences and features in R with Bioconductor
https://zenodo.org/record/5781776
https://dresa.org.au/materials/workshop-working-with-genomics-sequences-and-features-in-r-with-bioconductor
This record includes training materials associated with the Australian BioCommons workshop ‘Working with genomics sequences and features in R with Bioconductor’. This workshop took place on 23 September 2021.
**Workshop description**
Explore the many useful functions that the Bioconductor environment offers for working with genomic data and other biological sequences.
DNA and proteins are often represented as files containing strings of nucleic acids or amino acids. They are associated with text files that provide additional contextual information such as genome annotations.
This workshop provides hands-on experience with tools, software and packages available in R via Bioconductor for manipulating, exploring and extracting information from biological sequences and annotation files. We will look at tools for working with some commonly used file formats including FASTA, GFF3, GTF, methods for identifying regions of interest, and easy methods for obtaining data packages such as genome assemblies.
This workshop is presented by the Australian BioCommons and Monash Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Schedule (PDF): schedule for the workshop providing a breakdown of topics and timings
**Materials shared elsewhere:**
This workshop follows the tutorial ‘Working with DNA sequences and features in R with Bioconductor - version 2’ developed for Monash Bioinformatics Platform and Monash Data Fluency by Paul Harrison.
https://monashdatafluency.github.io/r-bioc-2/
Melissa Burke (melissa@biocommons.org.au)
Harrison, Paul (orcid: 0000-0002-3980-268X)
Deshpande, Nandan (orcid: 0000-0002-0324-8728)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Wong, Nick (orcid: 0000-0003-4393-7541)
Reames, Benjamin
R software, Bioconductor, Bioinformatics, Analysis, Genomics, Sequence analysis
23 (research data) Things
23 (research data) things is a set of training materials exploring research data management. Each of the 23 things offers a variety of learning opportunities with activities at three levels of complexity:
- Getting started
- Learn more
- Challenge me
All resources used in the program are online...
Keywords: research data management, training material
23 (research data) Things
https://zenodo.org/record/3955524
https://dresa.org.au/materials/23-research-data-things
23 (research data) things is a set of training materials exploring research data management. Each of the 23 things offers a variety of learning opportunities with activities at three levels of complexity:
* Getting started
* Learn more
* Challenge me
All resources used in the program are online and free to use and reuse under a Creative Commons Attribution 4.0 International licence. You could use all of them as a self-paced course, or choose components to integrate into your own course.
The 23 things are designed to build knowledge as the program progresses, so if you’re new to the world of research data management, we suggest you start with things 1-3 and then decide where you want to go from there.
These materials supported an international community-based training program delivered in 2016 by the Australian National Data Service.
This release migrates these materials to a GitHub repository for continued maintenance. Some updates were made to material that was outdated.
We welcome contributions and suggestions via GitHub Issue or Pull Request.
contact@ardc.edu.au
Liffers, Matthias (orcid: 0000-0002-3639-2080)
Stokes, Liz (orcid: 0000-0002-2973-5647)
Burton, Nichola (orcid: 0000-0003-4470-4846)
Kelly, Andrew (orcid: 0000-0002-5377-5526)
Honeyman, Tom (orcid: 0000-0001-9448-4023)
Brownlee, Rowan (orcid: 0000-0002-1955-1262)
Levett, Kerry (orcid: 0000-0001-5963-0195)
Brady, Catherine (orcid: 0000-0002-7919-7592)
research data management, training material
ARDC FAIR Data 101 self-guided
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the...
Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
ARDC FAIR Data 101 self-guided
https://zenodo.org/record/5094034
https://dresa.org.au/materials/ardc-fair-data-101-self-guided-bba41a59-8479-4f4f-b9ee-337b9eb294bf
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub.
contact@ardc.edu.au
Stokes, Liz (orcid: 0000-0002-2973-5647)
Liffers, Matthias (orcid: 0000-0002-3639-2080)
Burton, Nichola (orcid: 0000-0003-4470-4846)
Martinez, Paula A. (orcid: 0000-0002-8990-1985)
Simons, Natasha (orcid: 0000-0003-0635-1998)
Russell, Keith (orcid: 0000-0001-5390-2719)
McCafferty, Siobhann (orcid: 0000-0002-2491-0995)
Ferrers, Richard (orcid: 0000-0002-2923-9889)
McEachern, Steve (orcid: 0000-0001-7848-4912)
Barlow, Melanie (orcid: 0000-0002-3956-5784)
Brady, Catherine (orcid: 0000-0002-7919-7592)
Brownlee, Rowan (orcid: 0000-0002-1955-1262)
Honeyman, Tom (orcid: 0000-0001-9448-4023)
Quiroga, Maria del Mar (orcid: 0000-0002-8943-2808)
training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management