WEBINAR: Getting started with R
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not...
Keywords: R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WEBINAR: Getting started with R
https://zenodo.org/records/5214277
https://dresa.org.au/materials/webinar-getting-started-with-r-1c8f2b21-bc4b-4b42-9a5d-d6096a2afbe6
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not always the best choice, particularly for large and complex datasets.
R is an open-source software and programming language that enables data exploration, statistical analysis visualisation and more. While it is the tool of choice for data analysis, getting started can be a little daunting for those without a background in statistics.
In this webinar Saskia Freytag, an R user with over a decade of experience and member of the Bioconductor Community Advisory Board, will walk you through their hints and tips for getting started with R and data analysis. She’ll cover topics like R Studio and why you need it, where to get help, basic data manipulation, visualisations and extending R with libraries. The webinar will be followed by a short Q&A session
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Getting started with R - slides (PDF): Slides used in the presentation
Materials shared elsewhere:
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/JS7yZw7bnX8
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/records/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
Spreadsheets, organising data and first steps with R
Manipulating and analysing data with dplyr
Data visualisation
Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Recommended resources (PDF): A list of resources recommended by trainers and participants
Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Introduction to Metabarcoding using QIIME2
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.
Event description
Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy...
Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WORKSHOP: Introduction to Metabarcoding using QIIME2
https://zenodo.org/records/6350808
https://dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2-d3a7ac82-63aa-47e6-9d8e-5126419f9982
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.
Event description
Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.
This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Schedule (PDF): A breakdown of the topics and timings for the workshop
Materials shared elsewhere:
This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics.
https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/
Melissa Burke (melissa@biocommons.org.au)
Dungan, Ashley (orcid: 0000-0003-0958-2177)
Philip, Gayle (orcid: 0000-0002-2671-5093)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Ismail, Rania
Geissler, Laura
Tandon, Kshitij (orcid: 0000-0003-3022-0808)
Makunin, Igor
Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
ARDC Training Materials Metadata Checklist v1.1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
Keywords: checklist, Training material, FAIR, standard, requirements, metadata
ARDC Training Materials Metadata Checklist v1.1
https://zenodo.org/records/5276003
https://dresa.org.au/materials/ardc-training-materials-metadata-checklist-v1-1
The ARDC Training Materials Metadata Checklist aims to support learning designers, training materials creators, trainers and national training infrastructure providers to capture key information and apply appropriate mechanisms to enable sharing and reuse of their training materials
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
Unsworth, Kathryn (orcid: 0000-0002-5407-9987)
checklist, Training material, FAIR, standard, requirements, metadata
Training resources for sharing and reuse
This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis...
Keywords: FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance
Training resources for sharing and reuse
https://zenodo.org/records/5711887
https://dresa.org.au/materials/training-resources-for-sharing-and-reuse-6ecee7a3-6821-4149-92ab-e335daa571a8
This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis on sharing and reuse. This was a very collaborative project with the opportunity to work with different target audiences, topics and support expertise. To accommodate for a short timeline. We defined the scope to six topics. 1) Containers in Research 2) Data Governance 3) Software citation and Licensing 4) FAIR Data 101 5) Metadata for Training Materials 6) Machine Learning Resources.
You can watch the video on YouTube here: https://youtu.be/10Yv_BFa-mw
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance
ARDC FAIR Data 101 self-guided
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the...
Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
ARDC FAIR Data 101 self-guided
https://zenodo.org/records/5094034
https://dresa.org.au/materials/ardc-fair-data-101-self-guided-2d794a84-f0ff-4e11-a39c-fa8ea481e097
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub.
contact@ardc.edu.au
Stokes, Liz (orcid: 0000-0002-2973-5647)
Liffers, Matthias (orcid: 0000-0002-3639-2080)
Burton, Nichola (orcid: 0000-0003-4470-4846)
Martinez, Paula A. (orcid: 0000-0002-8990-1985)
Simons, Natasha (orcid: 0000-0003-0635-1998)
Russell, Keith (orcid: 0000-0001-5390-2719)
McCafferty, Siobhann (orcid: 0000-0002-2491-0995)
Ferrers, Richard (orcid: 0000-0002-2923-9889)
McEachern, Steve (orcid: 0000-0001-7848-4912)
Barlow, Melanie (orcid: 0000-0002-3956-5784)
Brady, Catherine (orcid: 0000-0002-7919-7592)
Brownlee, Rowan (orcid: 0000-0002-1955-1262)
Honeyman, Tom (orcid: 0000-0001-9448-4023)
Quiroga, Maria del Mar (orcid: 0000-0002-8943-2808)
training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
WORKSHOP: R: fundamental skills for biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
Event description
Biologists need data analysis skills to be able to...
Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: R: fundamental skills for biologists
https://zenodo.org/record/6766951
https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists
This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.
**Event description**
Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.
R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.
Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R.
Topics covered in this workshop include:
- Spreadsheets, organising data and first steps with R
- Manipulating and analysing data with dplyr
- Data visualisation
- Summarized experiments and getting started with Bioconductor
This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Schedule (PDF): A breakdown of the topics and timings for the workshop
- Recommended resources (PDF): A list of resources recommended by trainers and participants
- Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel.
**Materials shared elsewhere:**
This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available.
https://saskiafreytag.github.io/biocommons-r-intro/
This is derived from material produced as part of The Carpentries Incubator project
https://carpentries-incubator.github.io/bioc-intro/
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
Barugahare, Adele (orcid: 0000-0002-8976-0094)
Doyle, Maria
Ansell, Brendan (orcid: 0000-0003-0297-897X)
Varshney, Akriti
Bourke, Caitlin (orcid: 0000-0002-4466-6563)
Conradsen, Cara (orcid: 0000-0001-9797-3412)
Jung, Chol-Hee (orcid: 0000-0002-2992-3162)
Sandoval, Claudia
Chandrananda, Dineika (orcid: 0000-0002-8834-9500)
Zhang, Eden (orcid: 0000-0003-0294-3734)
Rosello, Fernando (orcid: 0000-0003-3885-8777)
Iacono, Giulia (orcid: 0000-0002-1527-0754)
Tarasova, Ilariya (orcid: 0000-0002-0895-9385)
Chung, Jessica (orcid: 0000-0002-0627-0955)
Moffet, Joel
Gustafsson, Johan (orcid: 0000-0002-2977-5032)
Ding, Ke
Feher, Kristen
Perlaza-Jimenez, Laura (orcid: 0000-0002-8511-1134)
Crowe, Mark (orcid: 0000-0002-9514-2487)
Ma, Mengyao
Kandhari, Nitika (orcid: 0000-0002-0261-727X)
Williams, Sarah
Nelson, Tiffanie (orcid: 0000-0002-5341-312X)
Schreiber, Veronika (orcid: 0000-0001-6088-7828)
Pinzon Perez, William
Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Introduction to Metabarcoding using QIIME2
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.
Event description
Metabarcoding has revolutionised the study of biodiversity science. By combining DNA...
Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WORKSHOP: Introduction to Metabarcoding using QIIME2
https://zenodo.org/record/6350808
https://dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2
This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.
**Event description**
Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.
This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Schedule (PDF): A breakdown of the topics and timings for the workshop
**Materials shared elsewhere:**
This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics.
https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/
Melissa Burke (melissa@biocommons.org.au)
Dungan, Ashley (orcid: 0000-0003-0958-2177)
Philip, Gayle (orcid: 0000-0002-2671-5093)
Perry, Andrew (orcid: 0000-0001-9256-6068)
Ismail, Rania
Geissler, Laura
Tandon, Kshitij (orcid: 0000-0003-3022-0808)
Makunin, Igor
Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WEBINAR: Getting started with R
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not...
Keywords: R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
WEBINAR: Getting started with R
https://zenodo.org/record/5214277
https://dresa.org.au/materials/webinar-getting-started-with-r
This record includes training materials associated with the Australian BioCommons webinar ‘Getting started with R’. This webinar took place on 16 August 2021.
Data analysis skills are now central to most biological experiments. While Excel can cover some of your data analysis needs, it is not always the best choice, particularly for large and complex datasets.
R is an open-source software and programming language that enables data exploration, statistical analysis visualisation and more. While it is the tool of choice for data analysis, getting started can be a little daunting for those without a background in statistics.
In this webinar Saskia Freytag, an R user with over a decade of experience and member of the Bioconductor Community Advisory Board, will walk you through their hints and tips for getting started with R and data analysis. She’ll cover topics like R Studio and why you need it, where to get help, basic data manipulation, visualisations and extending R with libraries. The webinar will be followed by a short Q&A session
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
**Files and materials included in this record:**
- Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
- Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
- Getting started with R - slides (PDF): Slides used in the presentation
**Materials shared elsewhere:**
A recording of the webinar is available on the Australian BioCommons YouTube Channel:
https://youtu.be/JS7yZw7bnX8
Melissa Burke (melissa@biocommons.org.au)
Freytag, Saskia (orcid: 0000-0002-2185-7068)
R statistical software, R studio, Tidyverse, Bioinformatics, Data analysis
ARDC FAIR Data 101 self-guided
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the...
Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
ARDC FAIR Data 101 self-guided
https://zenodo.org/record/5094034
https://dresa.org.au/materials/ardc-fair-data-101-self-guided-bba41a59-8479-4f4f-b9ee-337b9eb294bf
FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles
The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.
The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub.
contact@ardc.edu.au
Stokes, Liz (orcid: 0000-0002-2973-5647)
Liffers, Matthias (orcid: 0000-0002-3639-2080)
Burton, Nichola (orcid: 0000-0003-4470-4846)
Martinez, Paula A. (orcid: 0000-0002-8990-1985)
Simons, Natasha (orcid: 0000-0003-0635-1998)
Russell, Keith (orcid: 0000-0001-5390-2719)
McCafferty, Siobhann (orcid: 0000-0002-2491-0995)
Ferrers, Richard (orcid: 0000-0002-2923-9889)
McEachern, Steve (orcid: 0000-0001-7848-4912)
Barlow, Melanie (orcid: 0000-0002-3956-5784)
Brady, Catherine (orcid: 0000-0002-7919-7592)
Brownlee, Rowan (orcid: 0000-0002-1955-1262)
Honeyman, Tom (orcid: 0000-0001-9448-4023)
Quiroga, Maria del Mar (orcid: 0000-0002-8943-2808)
training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
Training resources for sharing and reuse
This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis...
Keywords: FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance
Training resources for sharing and reuse
https://zenodo.org/record/5711887
https://dresa.org.au/materials/training-resources-for-sharing-and-reuse
This presentation outlines the work completed during a consultancy for ARDC by Dr Paula Martinez to develop new and publish existing national skills materials for reuse by the sector. She was responsible for the work package targeted to co-develop national skills materials with a strong emphasis on sharing and reuse. This was a very collaborative project with the opportunity to work with different target audiences, topics and support expertise. To accommodate for a short timeline. We defined the scope to six topics. 1) Containers in Research 2) Data Governance 3) Software citation and Licensing 4) FAIR Data 101 5) Metadata for Training Materials 6) Machine Learning Resources.
You can watch the video on YouTube here: https://youtu.be/10Yv_BFa-mw
contact@ardc.edu.au
Martinez, Paula Andrea (orcid: 0000-0002-8990-1985)
FAIR training material, training material, guides, software citation, software publishing, containers, software licensing, training materials checklist, research data governance