WEBINAR: Pro tips for scaling bioinformatics workflows to HPC
This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023.
Event description
High Performance Computing (HPC) infrastructures offer the computational scale and...
Keywords: Bioinformatics, Workflows, HPC, High Performance Computing
WEBINAR: Pro tips for scaling bioinformatics workflows to HPC
https://zenodo.org/records/8008227
https://dresa.org.au/materials/webinar-pro-tips-for-scaling-bioinformatics-workflows-to-hpc-9f2a8b90-88da-433b-83b2-b1ab262dd9df
This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023.
Event description
High Performance Computing (HPC) infrastructures offer the computational scale and efficiency that life scientists need to handle complex biological datasets and multi-step computational workflows. But scaling workflows to HPC from smaller, more familiar computational infrastructures brings with it new jargon, expectations, and processes to learn. To make the most of HPC resources, bioinformatics workflows need to be designed for distributed computing environments and carefully manage varying resource requirements, and data scale related to biology.
In this webinar, Dr Georgina Samaha from the Sydney Informatics Hub, Dr Matthew Downton from the National Computational Infrastructure (NCI) and Dr Sarah Beecroft from the Pawsey Supercomputing Research Centre help you navigate the world of HPC for running and developing bioinformatics workflows. They explain when you should take your workflows to HPC and highlight the architectural features you should make the most of to scale your analyses once you’re there. You’ll hear pro-tips for dealing with common pain points like software installation, optimising for parallel computing and resource management, and will find out how to get access to Australia’s National HPC infrastructures at NCI and Pawsey.
Materials
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Pro-tips_HPC_Slides: A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/YKJDRXCmGMo
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Beecroft, Sarah (orcid: 0000-0002-3935-2279)
Downton, Matthew (orcid: 0000-0002-4693-1965)
Bioinformatics, Workflows, HPC, High Performance Computing
WEBINAR: Pro tips for scaling bioinformatics workflows to HPC
This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023.
Event description
High Performance Computing (HPC) infrastructures offer the computational scale and...
Keywords: Bioinformatics, Workflows, HPC, High Performance Computing
WEBINAR: Pro tips for scaling bioinformatics workflows to HPC
https://zenodo.org/record/8008227
https://dresa.org.au/materials/webinar-pro-tips-for-scaling-bioinformatics-workflows-to-hpc
This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023.
Event description
High Performance Computing (HPC) infrastructures offer the computational scale and efficiency that life scientists need to handle complex biological datasets and multi-step computational workflows. But scaling workflows to HPC from smaller, more familiar computational infrastructures brings with it new jargon, expectations, and processes to learn. To make the most of HPC resources, bioinformatics workflows need to be designed for distributed computing environments and carefully manage varying resource requirements, and data scale related to biology.
In this webinar, Dr Georgina Samaha from the Sydney Informatics Hub, Dr Matthew Downton from the National Computational Infrastructure (NCI) and Dr Sarah Beecroft from the Pawsey Supercomputing Research Centre help you navigate the world of HPC for running and developing bioinformatics workflows. They explain when you should take your workflows to HPC and highlight the architectural features you should make the most of to scale your analyses once you’re there. You’ll hear pro-tips for dealing with common pain points like software installation, optimising for parallel computing and resource management, and will find out how to get access to Australia’s National HPC infrastructures at NCI and Pawsey.
Materials
Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event.
Files and materials included in this record:
Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc.
Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file.
Pro-tips_HPC_Slides: A PDF copy of the slides presented during the webinar.
Materials shared elsewhere:
A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/YKJDRXCmGMo
Melissa Burke (melissa@biocommons.org.au)
Samaha, Georgina (orcid: 0000-0003-0419-1476)
Beecroft, Sarah (orcid: 0000-0002-3935-2279)
Downton, Matthew (orcid: 0000-0002-4693-1965)
Bioinformatics, Workflows, HPC, High Performance Computing