Register training material
8 materials found

Authors: Barlow, Melanie (orcid: 000...  or Doyle, Maria  or Downton, Matthew (orcid: 00...  or Dungan, Ashley (orcid: 0000... 


WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

 

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists-81aa00db-63ad-4962-a7ac-b885bf9f676b This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.   Event description Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: Spreadsheets, organising data and first steps with R Manipulating and analysing data with dplyr Data visualisation Summarized experiments and getting started with Bioconductor   This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Recommended resources (PDF): A list of resources recommended by trainers and participants Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. Materials shared elsewhere:   This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Introduction to Metabarcoding using QIIME2

This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.

Event description

Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy...

Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome

WORKSHOP: Introduction to Metabarcoding using QIIME2 https://dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2-d3a7ac82-63aa-47e6-9d8e-5126419f9982 This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022. Event description Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.  This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.  Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Schedule (PDF): A breakdown of the topics and timings for the workshop Materials shared elsewhere: This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
WEBINAR: Pro tips for scaling bioinformatics workflows to HPC

This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023.

Event description 

High Performance Computing (HPC) infrastructures offer the computational scale and...

Keywords: Bioinformatics, Workflows, HPC, High Performance Computing

WEBINAR: Pro tips for scaling bioinformatics workflows to HPC https://dresa.org.au/materials/webinar-pro-tips-for-scaling-bioinformatics-workflows-to-hpc-9f2a8b90-88da-433b-83b2-b1ab262dd9df This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023. Event description  High Performance Computing (HPC) infrastructures offer the computational scale and efficiency that life scientists need to handle complex biological datasets and multi-step computational workflows. But scaling workflows to HPC from smaller, more familiar computational infrastructures brings with it new jargon, expectations, and processes to learn. To make the most of HPC resources, bioinformatics workflows need to be designed for distributed computing environments and carefully manage varying resource requirements, and data scale related to biology.   In this webinar, Dr Georgina Samaha from the Sydney Informatics Hub, Dr Matthew Downton from the National Computational Infrastructure (NCI) and Dr Sarah Beecroft from the Pawsey Supercomputing Research Centre help you navigate the world of HPC for running and developing bioinformatics workflows. They explain when you should take your workflows to HPC and highlight the architectural features you should make the most of to scale your analyses once you’re there. You’ll hear pro-tips for dealing with common pain points like software installation, optimising for parallel computing and resource management, and will find out how to get access to Australia’s National HPC infrastructures at NCI and Pawsey.  Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Pro-tips_HPC_Slides: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/YKJDRXCmGMo Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, HPC, High Performance Computing
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

The course structure was based on 'FAIR Data in the...

Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided-2d794a84-f0ff-4e11-a39c-fa8ea481e097 FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub. contact@ardc.edu.au training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management
WEBINAR: Pro tips for scaling bioinformatics workflows to HPC

This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023.

Event description 

High Performance Computing (HPC) infrastructures offer the computational scale and...

Keywords: Bioinformatics, Workflows, HPC, High Performance Computing

WEBINAR: Pro tips for scaling bioinformatics workflows to HPC https://dresa.org.au/materials/webinar-pro-tips-for-scaling-bioinformatics-workflows-to-hpc This record includes training materials associated with the Australian BioCommons webinar ‘Pro tips for scaling bioinformatics workflows to HPC’. This webinar took place on 31 May 2023. Event description  High Performance Computing (HPC) infrastructures offer the computational scale and efficiency that life scientists need to handle complex biological datasets and multi-step computational workflows. But scaling workflows to HPC from smaller, more familiar computational infrastructures brings with it new jargon, expectations, and processes to learn. To make the most of HPC resources, bioinformatics workflows need to be designed for distributed computing environments and carefully manage varying resource requirements, and data scale related to biology.   In this webinar, Dr Georgina Samaha from the Sydney Informatics Hub, Dr Matthew Downton from the National Computational Infrastructure (NCI) and Dr Sarah Beecroft from the Pawsey Supercomputing Research Centre help you navigate the world of HPC for running and developing bioinformatics workflows. They explain when you should take your workflows to HPC and highlight the architectural features you should make the most of to scale your analyses once you’re there. You’ll hear pro-tips for dealing with common pain points like software installation, optimising for parallel computing and resource management, and will find out how to get access to Australia’s National HPC infrastructures at NCI and Pawsey.  Materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. Pro-tips_HPC_Slides: A PDF copy of the slides presented during the webinar. Materials shared elsewhere: A recording of this webinar is available on the Australian BioCommons YouTube Channel: https://youtu.be/YKJDRXCmGMo Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Workflows, HPC, High Performance Computing
WORKSHOP: R: fundamental skills for biologists

This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022.

Event description

Biologists need data analysis skills to be able to...

Keywords: Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation

WORKSHOP: R: fundamental skills for biologists https://dresa.org.au/materials/workshop-r-fundamental-skills-for-biologists This record includes training materials associated with the Australian BioCommons workshop ‘R: fundamental skills for biologists’. This workshop took place over four, three-hour sessions on 1, 8, 15 and 22 June 2022. **Event description** Biologists need data analysis skills to be able to interpret, visualise and communicate their research results. While Excel can cover some data analysis needs, there is a better choice, particularly for large and complex datasets.  R is a free, open-source software and programming language that enables data exploration, statistical analysis, visualisation and more. The large variety of R packages available for analysing biological data make it a robust and flexible option for data of all shapes and sizes.  Getting started can be a little daunting for those without a background in statistics and programming. In this workshop we will equip you with the foundations for getting the most out of R and RStudio, an interactive way of structuring and keeping track of your work in R. Using biological data from a model of influenza infection, you will learn how to efficiently and reproducibly organise, read, wrangle, analyse, visualise and generate reports from your data in R. Topics covered in this workshop include: - Spreadsheets, organising data and first steps with R - Manipulating and analysing data with dplyr - Data visualisation - Summarized experiments and getting started with Bioconductor This workshop is presented by the Australian BioCommons and Saskia Freytag from WEHI  with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop - Recommended resources (PDF): A list of resources recommended by trainers and participants - Q_and_A(PDF): Archive of questions and their answers from the workshop Slack Channel. **Materials shared elsewhere:** This workshop follows the tutorial ‘Introduction to data analysis with R and Bioconductor’ which is publicly available. https://saskiafreytag.github.io/biocommons-r-intro/ This is derived from material produced as part of The Carpentries Incubator project https://carpentries-incubator.github.io/bioc-intro/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Statistics, R software, RStudio, Data visualisation
WORKSHOP: Introduction to Metabarcoding using QIIME2

This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022.

Event description

Metabarcoding has revolutionised the study of biodiversity science. By combining DNA...

Keywords: Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome

WORKSHOP: Introduction to Metabarcoding using QIIME2 https://dresa.org.au/materials/workshop-introduction-to-metabarcoding-using-qiime2 This record includes training materials associated with the Australian BioCommons workshop ‘Introduction to Metabarcoding using QIIME2’. This workshop took place on 22 February 2022. **Event description** Metabarcoding has revolutionised the study of biodiversity science. By combining DNA taxonomy with high-throughput DNA sequencing, it offers the potential to observe a larger diversity in the taxa within a single sample, rapidly expanding the scope of microbial analysis and generating high-quality biodiversity data.  This workshop will introduce the topic of metabarcoding and how you can use Qiime2 to analyse 16S data and gain simultaneous identification of all taxa within a sample. Qiime2 is a popular tool used to perform powerful microbiome analysis that can transform your raw data into publication quality visuals and statistics. In this workshop, using example 16S data from the shallow-water marine anemone E. diaphana, you will learn how to use this pipeline to run essential steps in microbial analysis including generating taxonomic assignments and phylogenic trees, and performing both alpha- and beta- diversity analysis.  Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. **Files and materials included in this record:** - Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. - Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. - Schedule (PDF): A breakdown of the topics and timings for the workshop **Materials shared elsewhere:** This workshop follows the tutorial ‘Introduction to metabarcoding with QIIME2’ which has been made publicly available by Melbourne Bioinformatics. https://www.melbournebioinformatics.org.au/tutorials/tutorials/qiime2/qiime2/ Melissa Burke (melissa@biocommons.org.au) Bioinformatics, Analysis, Workflows, Microbial ecology, Metabarcoding, Microbiome
ARDC FAIR Data 101 self-guided

FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles

The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course.

The course structure was based on 'FAIR Data in the...

Keywords: training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management

ARDC FAIR Data 101 self-guided https://dresa.org.au/materials/ardc-fair-data-101-self-guided-bba41a59-8479-4f4f-b9ee-337b9eb294bf FAIR Data 101 v3.0 is a self-guided course covering the FAIR Data principles The FAIR Data 101 virtual course was designed and delivered by the ARDC Skilled Workforce Program twice in 2020 and has now been reworked as a self-guided course. The course structure was based on 'FAIR Data in the Scholarly Communications Lifecycle', run by Natasha Simons at the FORCE11 Scholarly Communications Institute. These training materials are hosted on GitHub. contact@ardc.edu.au training material, FAIR data, video, webinar, activities, quiz, FAIR, research data management