Register training material
2 materials found

Authors: AMD  or Jean Favre 

and

Keywords: AI  or GPUs  or performance 


AMD Profiling

The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs.

You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite.

You will also learn how to use the new...

Keywords: supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm

Resource type: activity

AMD Profiling https://dresa.org.au/materials/amd-profiling The AMD profiling workshop covers the AMD suite of tools for development of HPC applications on AMD GPUs. You will learn how to use the rocprof profiler and trace visualization tool that has long been available as part of the ROCm software suite. You will also learn how to use the new Omnitools - Omnitrace and Omniperf - that were introduced at the end of 2022. Omnitrace is a powerful tracing profiler for both CPU and GPU. It can collect data from a much wider range of sources and includes hardware counters and sampling approaches. Omniperf is a performance analysis tool that can help you pinpoint how your application is performing with a visual view of the memory hierarchy on the GPU as well as reporting the percentage of peak for many different measurements. training@pawsey.org.au supercomputing, performance, GPUs, CPUs, AMD, HPC, ROCm
Embracing new solutions for in-situ visualisation

This PPT was used by Jean Favre, senior visualisation software engineer at CSCS, the Swiss National Supercomputing Centre during his presentation at P'Con '21 (Pawsey's first PaCER Conference).

This material discusses the upcoming release of ParaView v5.10, a leading scientific visualisation...

Keywords: ParaView, GPUs, supercomputer, supercomputing, visualisation, data visualisation

Resource type: presentation

Embracing new solutions for in-situ visualisation https://dresa.org.au/materials/embracing-new-solutions-for-in-situ-visualisation This PPT was used by Jean Favre, senior visualisation software engineer at CSCS, the Swiss National Supercomputing Centre during his presentation at P'Con '21 (Pawsey's first PaCER Conference). This material discusses the upcoming release of ParaView v5.10, a leading scientific visualisation application. In this release ParaView consolidates its implementation of the Catalyst API, a specification developed for simulations and scientific data producers to analyse and visualise data in situ. The material reviews some of the terminology and issues of different in-situ visualisation scenarios, then reviews early Data Adaptors for tight-coupling of simulations and visualisation solutions. This is followed by an introduction of Conduit, an intuitive model for describing hierarchical scientific data. Both ParaView-Catalyst and Ascent use Conduit’s Mesh Blueprint, a set of conventions to describe computational simulation meshes. Finally, the materials present CSCS’ early experience in adopting ParaView-Catalyst and Ascent via two concrete examples of instrumentation of some proxy numerical applications. training@pawsey.org.au ParaView, GPUs, supercomputer, supercomputing, visualisation, data visualisation